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ABSTRACT 

Atmospheric Water Harvesting: An Experimental Study of Viability and the Influence of Surface 
Geometry, Orientation, and Drainage 

Carson Hand 

 

Fresh water collection techniques have gained significant attention due to global 

dwindling of fresh water resources and recent scares such as the 2011-2017 California 

drought. This project explores the economic viability of actively harvesting water from 

fog, and techniques to maximize water collection. Vapor compression and 

thermoelectric cooling based dehumidifier prototypes are tested in a series of 

experiments to assess water collection capability in foggy environments, and what 

parameters can increase that capability. This testing shows an approximate maximum 

collection rate of 1.25 L/kWh for the vapor compression prototype, and 0.32 L/kWh for 

the thermoelectric cooling prototype; compared to 315 L/kWh for desalination or 12 

L/m2/day for passive meshes. Exploration of parameters on the thermoelectric cooling 

prototype show a potential increase in water collection rate of 29% with the addition of 

a Teflon coating to the collection surface, 15% by clearing the collection surface, and 

89% by tilting certain collection surfaces by 60-75°. In combination, these parameters 

could push active atmospheric water harvesting into economic viability where 

significant infrastructure investment is not feasible. 

 

 

 

 

 

 

Keywords: Vapor compression, thermoelectric cooling, Peltier element, dehumidification, 

atmospheric water harvesting, fog catching.  
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Chapter 1: Introduction and Objectives 

1.1 Introduction 

Potable water collection is becoming an increasing concern as world population 

rises, and natural fresh water resources are stretched to their limits. This heightened 

demand opens the door for previously economically unviable methods to be explored 

and perhaps implemented. This project will explore the viability of actively harvesting 

water from the air, particularly from coastal fog, and cool high humidity environments. 

Additionally, this project will focus on ways of maximizing water collection from active 

water harvesting devices using vapor compression and thermoelectric dehumidification. 

 

1.2 Objectives 

The objectives of this project are to determine the viability of active atmospheric 

water harvesting using vapor-compression and thermo-electric-cooling device 

prototypes, to discover ways of maximizing the effectiveness of these devices, and to 

understand the parameters that most impact their performance. Due to its high 

modularity, this project will primarily use the thermoelectric cooling prototype to 

explore the optimizing parameters of a particular device configuration. The vapor 

compression prototype will provide a baseline collection rate on which these 

parameters can be projected to develop an idea of the capability of a fully optimized 

device. 
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Chapter 2: Background 

2.1 The Challenge 

Water collection and purification is not a new concept. For places around the 

world where there have been serious water shortages, several different ideas for 

harvesting usable water have been explored. The most obvious water collection 

techniques might be trivial, but they are necessary options to consider before water 

collecting becomes too difficult, expensive, or inefficient. If there is not enough rainfall 

to support a large body of fresh water, one might turn to groundwater beneath the 

surface and dig wells to collect the valuable resource. For places like the Atacama 

Desert in Chile, rainfall is so infrequent that there is no water to harvest at a reachable 

depth below the surface. The increasing scarcity of fresh water around the world due 

to climate change and population growth is a persistent problem that will only get 

worse. The recent California drought is only a local reminder of a much larger problem. 

New options must be explored in order to help properly prepare for the water 

shortage inevitability. 
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Figure 1. California drought map. (1) 

 

2.2 Alternative Water Sources 

2.2.1 Desalination 

The earth is covered by 71% water, but only 3% of all water is contained inland 

and the other 97% is contained by the ocean. Unfortunately, seawater is not drinkable 

by humans in its natural state because of its high salt content; the extremely salty 

solution actually draws water out of the body’s cells via osmosis, leaving the drinker 

less hydrated than before. This problem gave birth to a technique of water extraction 

known as desalination where the salt is extracted to provide drinkable water. There 

are two primary processes for desalting salt water: membrane and filtration processes 
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and thermal processes. In the first method, salt water is forced through selectively 

permeable membranes to filter the salt and other contaminants out of the water. The 

most common of these methods is reverse osmosis (RO). In the thermal method, salt 

water is heated to the boiling point and the vapor travels to a collector while leaving 

behind salt or very salty water known as brine. This process mimics the natural water 

cycle, but can be performed much more quickly. The most common thermal 

desalination processes are multi-stage flash distillation (MSF) and multiple-effect 

distillation (MED). Other desalination processes include electron dialysis (ED), which 

uses an electric current to move salt ions through a selectively permeable membrane, 

and electrodeioniation (EDI), which uses ion-exchange methods to separate the salt 

from the water (2). The figure below shows that reverse osmosis and multi-stage flash 

distillation account for approximately 86.8% of the installed capacity of desalination 

plants. 

 

Figure 2. Worldwide desalination capacity by type in 2010. (3) 
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Diagrams of the two most common desalination processes, multi-stage 

flash and reverse osmosis, are shown in Figure 3 and Figure 4 respectively. 

 

Figure 3. Multi-stage flash desalination process. (4) 

 

 

Figure 4. Reverse osmosis process. (5)  
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Table 1. The first-year cost of the water production for various desalination plants 

around the world, with the year of the projected cost and the data source. (2) 
 

 

The first year water costs (US$/m3) shown in Table 1 range from $0.45/m3 to 

$1.48/m3 which can provide a useful comparison when evaluating the performance of 

the active water harvesting design. The best reverse osmosis procedures use 

approximately 3.2 kWh/m3 and with the current energy cost in California being 

approximately $.1178/kWh for industry (6), the price of reverse osmosis is 

approximately $0.38/m3. 
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Construction is underway in Carlsbad, CA to build the largest desalination plant 

in the western hemisphere. This plant will use reverse osmosis, and will be capable of 

making 190,000 m3 of freshwater daily. The average cost to turn 1230 m3 of salt water 

into fresh water ranges from $800 to $1,400. Water bills would rise $5-7 dollars a 

month to pay for desalination. The water authority in San Diego will pay $2,014-2,257 

per 1230 m3. Unfortunately, desalination is very energy intensive, requiring 

approximately 38 Megawatts a day which translates to about double the cost of more 

common water extraction techniques. Furthermore, desalination is typically only a 

temporary option for more remote locations until drought conditions lessen naturally 

or cheaper water sources become available. (7) 

 

2.2.2 Passive Collection: Meshes 

Another option currently being researched at MIT and tested in Chile is passive 

water collection. This method employs large meshes (nets) with material properties 

and microgeometry that assist in the condensation of water droplets. These meshes 

are strategically placed (e.g. areas where coastal fog rolls through) to allow fog to pass 

through and deposit water.  Some prototypes can produce approximately 1.9 m3 per 

catcher per day. Although this is a significant number it obviously does not compete 

with the 190,000 m3 produced by desalination plants daily. Passive fog catching also is 

dependent on favorable fog and wind conditions which seriously limit its consistency, 

and it requires a large area for significant production. 

In particular, two scientists from MIT investigated the effects of surface 
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geometry on collection rates of fog. Their datum, Rachel meshes, have been reported 

to collect anywhere from 0.1-10 L/m2/day. The variables that were investigated were 

width of the mesh fibers, shade coefficient, and composition of mesh material. Each 

of their designs were tested in a controlled-humidity box that kept the relative 

humidity at 100% and the temperature at 26.4 ± .5 °C. The humid air was propelled by 

a fan towards the meshes at a speed of 2 m/s. The experiment showed that for fog 

conditions where the velocity ranged from 1-10 m/s their mesh could collect more 

efficiently than the Rachel meshes that are the current industry standard. In 

particular, they predict that in Chile, where passive fog collection is a primary means 

for obtaining water and the average wind speed is 6 m/s, their meshes may be able to 

collect up to 12 L/m2/day. (8) 

 

Figure 5. Passive fog catching meshes. (9) 
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2.2.3 Active Collection 

Active water harvesting methods are uncommon and for the most part 

underdeveloped, but there are a few designs that exist and are worth mentioning. 

The first, shown in Figure 6, is the WMS1000, designed by inventor Marc Parent 

and sponsored and built by Eole Water. The wind turbine generates all of the power 

necessary for its compressor-based refrigeration unit. A condenser with a moisture 

exchange surface 1m wide and 5m long allows the system to collect up to 1500 liters of 

water a day depending on the weather. (10) 

 

Figure 6. The WMS1000 water collecting wind turbine. (11) 

Another concept that utilizes a refrigeration system is the Airdrop, shown below 

in Figure 7. Air is drawn underground and routed through a series of pipes that rapidly 

cool it to the temperature of the soil. As it reaches the dew point, water condenses on 

the pipe and runs into an underground storage area. A pump is then used to move the 

water through pipes to irrigate the roots of plants. The underground containment of the 

system also prevents evaporation and runoff losses on the surface. (11) 
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Figure 7. The Airdrop water collection system in possible agricultural application. (11) 

Departing from the use of a refrigeration cycle is the A2WH, shown below in 

Figure 8. This system uses solar energy to drive a small fan which creates airflow over 

a salt desiccant that captures the water. Once the salt desiccant is saturated, solar 

heat bakes a humidity-enriched vapor out of the salt, from which water is condensed 

and collected at ambient temperature within the device. 

 

 

 

Figure 8. The A2WH active moisture harvester. (11) 
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2.2.4 Dehumidification 

One process very similar to the active approaches mentioned above is 

dehumidification. Dehumidification is the process of removing moisture from the 

atmosphere in order to keep a comfortable level of humidity. This process is very 

common in homes that are located in very humid areas and helps to prevent mold 

from accumulating in dark moist areas. In practice, there are two main types of 

dehumidifiers, those that employ refrigeration and those that rely on absorption 

(soaking up water in pore spaces) and adsorption (adherence of a very thin film of 

water on a surface). Refrigeration dehumidifiers use vapor compression cycles to cool 

the air to the dew point, at which point water vapor begins to condense. The water is 

collected in a collection chamber and the dry air is heated to room temperature 

before exiting the system. Filters are used to maintain cleanliness. 

 

Figure 9. Refrigeration Dehumidification process. (12) 

Absorption/adsorption dehumidifiers rely on a mechanical means of extracting 

water, usually employing a rotating disk with extremely high surface area coated with 
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silica to attract and hold the water in one process, while in a regeneration process, 

hot air absorbs water from the other side of the disk and releases it on the surface of 

the condenser. 

 

Figure 10. Absorption/adsorption dehumidification process. (13) 

 

2.2.5 Thermoelectric Cooling Products 

There are small TEC (thermoelectric cooling), or Peltier element, powered 

dehumidifiers on the market now, and while not as efficient as vapor compression 

based models, they are very compact and less noisy. These dehumidifiers tend to be 

used for smaller scale applications, such as bathrooms, as they do not have the same 

capacity as the larger vapor compression models. An example device, the Eva-dry 2200, 

is shown below in Figure 11 below. The manufacturer claims that the device will collect 
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about 20.5 ounces of water per day at 72 W power consumption, dependent on relative 

humidity. (14) 

 

Figure 11. Eva-dry 2200 Peltier element dehumidifier. (14) 

 

2.2.6 Peltier Elements 

Peltier elements use electric energy to create a heat flux across a metal plate. 

They operate by running current through two semiconductors, one n-type, one p-type, 

sandwiched together and connected in thermal parallel and in electrical series. This is 

shown in Figure 12. It uses the same principle as a thermocouple, where a current is 

formed by two different metals reacting differently to a temperature gradient, but in 

reverse. This is based on the fact that charge carriers diffuse from the hot side to the 

cold side of a material under a temperature gradient. In this case, the charge carriers of 

an n-doped semiconductor are electrons, and the charge carriers of a p-doped 

semiconductor are “holes.” By connecting the two materials in a circuit, the movement 
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of these electrons and holes can be harnessed to create a current. The Peltier element 

uses this same principle, but in reverse; current is supplied to move the charge carriers, 

which then moves heat from one side of the element to the other. A simple model of 

this is shown in Figures 12 and 13. 

Peltier elements are a less efficient method of cooling than vapor-compression 

(about ¼ as efficient) (15), but they do have some distinct advantages. They have no 

moving parts or fluids, so shape and size are very flexible. Leaking is also not an issue. 

They have long lifespans, and are easily controllable by changes in electrical input. They 

tend to operate more efficiently at lower temperature differences, as they have to 

dissipate the heat from the hot side as well as the heat generated by the electrical 

power input. (16) 

 

Figure 12. Peltier element basic interior (17) 
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Figure 13. Simple model of the Peltier effect. (18) 

In Peltier elements there is a linear relationship between cooling capacity and 

temperature difference, as shown below in Figure 14. The graph shows that the 

maximum cooling capacity occurs at the lowest temperature difference.  
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Figure 14. Cooling capacity as a linear function of temperature difference across the 
sides of a selected Peltier element. (19) 

 

2.3 Background Science 

2.3.1 Weather and Fog Information 

There are two major types of fog in California, radiation fog and advection fog. 

For both types, fog is formed when the relative humidity of the air reaches 100%, and 

water vapor condenses on tiny particles in the air, creating the “foggy” appearance. 

The fog stays suspended in the air due to an extremely low terminal velocity, and 

slight convection currents keeping the particles afloat. Radiation fog is produced by 

rapid surface cooling due to radiation heat loss. It usually forms at night under clear 
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skies with calm winds when heat absorbed by the ground during the day is radiated 

into space. As the ground continues to cool, the moist air reaches saturation and fog 

forms. Radiation fog is always found at ground level and usually remains stationary. 

According to the National Weather Service Weather Forecast Office, the depth of the 

radiation fog can vary from 3 feet to about 1000 feet. (21) Radiation fog commonly 

forms on floors of interior valleys. 

 

Figure 15. Radiation fog formation. (22) 

The other type of fog in California is advection fog. With advection fog, the 

condensation is caused by the horizontal movement of warm moist air over a cold 

surface. 

 

Figure 16. Advection fog formation. (22) 
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Advection fog is common along the California coast in summer. When warm, 

moist air from the ocean flows over a cold inland area, the moist air will be cooled 

from below. If the air is near saturation, moisture will condense out of the cooled air 

and form fog. In both cases the air above the surface is cooled to its dew point (100% 

relative humidity). 

A clear sky, light winds, relatively high humidity and a stable atmosphere are 

needed for the formation for both radiation fog and advection fog. (23) A clear sky 

allows the long wave radiation to leave the earth’s atmosphere, instead of being 

trapped between the ground and the clouds. With a light wind, fog will form at ground 

level. If the wind is too strong, the condensation will instead form low stratus clouds. 

 

2.3.2 Condensation Types 

There are two types of condensation: dropwise and filmwise condensation. 

Dropwise condensation is where the vapor condenses on a surface that is not already 

wetted by the condensate, while filmwise condensation is where the vapor is 

condensing on thin layers of condensate already present. The heat transfer 

coefficient of dropwise condensation is often 10 to 20 times higher than filmwise 

condensation. (24) 
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Figure 17. Filmwise and dropwise condensation diagram. (25) 

Dropwise condensation requires that the surface be continually exposed to the 

vapor by the formation and coalescence of drops, and the wiping action of running 

drops. Drops are formed at nucleation sites on the surface, and they grow until 

neighboring drops combine. This continues until the drops reach maximum size, and 

are caused to “drop” due to gravity. (24) 

 

2.3.3 Surface Effects on Condensation 

In order to make dropwise condensation possible, a non-wetting agent is 

usually required. One such agent is polytetrafluoroethylene, or Teflon. The goal of 

these “dropwise promoters” is to make sure that the vapor condenses in drops rather 

than in a film. One of the more cutting edge ways that this can be accomplished is by 

having a complex pattern of hydrophilic and hydrophobic materials. (24) 

A more common and affordable dropwise promoter, such as Teflon, is ideal for 

a project of this scope. Teflon coatings have been found to be effective in promoting 
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dropwise condensation for use with steam cycles. Teflon is best bonded to metals, 

and aluminum in particular. This is because the Teflon can fill in the holes in the 

porous oxide layer of the aluminum, providing a strong mechanical bond. It is 

important that the Teflon layer be kept thin (ideally in the ten-thousandths of a 

centimeter range), because the thermal conductivity of Teflon is low, so a thick layer 

will impede surface cooling. (26) 
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2.3.4 Pressure Effects on Condensation 

Increased pressure increases the dew point of vapors, as shown in Figure 19 

below. 

 

Figure 18. New dew point vs. old dew point based on pressure difference. (27) 

Using pressure to modify the dewpoint can be very useful when working with 

pure vapors, but it is not as useful for condensing water. This is because pressurization 

takes a large amount of energy, and when working with an air and water vapor mixture, 

a lot of the energy used to pressurize the mixture is being used to pressurize the air, 
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which is useless for this application. As such, pressurization techniques are not generally 

useful for atmospheric water harvesting at the moment. 

 

2.4 Initial Vapor Compression Prototype 

The initial design, shown in Figure 19, consists of a refrigeration cycle where the 

evaporator sits in a fan-fed rectangular duct. The refrigeration cycle is powered by a 

2490 btu/hr (730 W) rated Copeland condensing unit, which is composed of a ¼ hp (186 

W) semi-hermetic compressor, a fan-blown condenser, and a receiver. This unit is 

connected via 1/8th inch (3.175 mm) copper tubing to four evaporators within the duct. 

The copper tubing is routed with the help of ¼ inch (6.35 mm) brass compression fittings 

(unions and tees). The duct is rectangular and made of ¼ inch (6.35 mm) polycarbonate 

plastic.  

The evaporators are positioned such that there is a pair of front and back 

evaporators side by side with another identical pair. The evaporator pairs are connected 

in series, with the coolant running through the back evaporator first and the front 

evaporator second. The moist air is drawn into the duct using a pair of fans (one per pair 

of evaporators). These fans are connected to power throttlers and can be run using a 

variety of flowrates to test the optimal operating condition for condensation, but are 

rated for 0.11 m3/s. The four evaporators and two fans are connected to the inside of 

the duct using bolts fixed to the duct floor. The coolant (R134a) lines run out of the top 

portion of the back of the duct and connect the evaporators to the condensing unit. 

Since one pair of evaporators is connected in parallel to the other pair, the entering and 
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exiting lines meet in a T-joint before and after the condensing unit.  

In order to control the coolant flowrate, two expansion valves and a ball valve 

are connected in parallel between the receiver and the evaporators. The ball valve 

controls broad flowrate change, while the expansion valves are used to fine-tune the 

system flowrate. Two temperature and pressure gauges are used to monitor the high-

side and low-side pressures and temperatures of the system. The entire duct is screwed 

to a fixed wooden board along with the condensing unit. The condensing unit is directly 

behind the duct in order to route some of the cold air coming out of the duct through 

the condenser. The duct is mounted at a 3 degree angle, tipped forward as seen in 

Figure 20. This allows condensate to flow out the front of the duct, which has a small lip 

with a break in one corner to channel the condensate into a collection bin. This requires 

that the system be mounted on an elevated surface. The entire system is mounted on a 

table with wheels to allow for some mobility. The power cords from the two fans and 

the condensing unit are connected through a power strip, a wattmeter, and then 

plugged into a standard wall outlet. A system diagram is shown in Figure 21. 
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Figure 19. Isometric view of the initial prototype design. 

  

  

Figure 20. Side view of the initial prototype design. 
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Figure 21. Initial prototype design system diagram. 
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Chapter 3: Design Development 

3.1 Vapor Compression Prototype Modifications 

The vapor compression prototype was modified for this project as follows. Two 

ball valves were added to one evaporator set branch, to allow this branch to be 

bypassed. This puts the prototype into the “single evaporator” (two evaporators in 

series, one set of evaporators) mode, which concentrates the cooling power into the 

remaining evaporator set, resulting in higher refrigerant flowrate through the 

evaporators, and more cooling in the forward evaporator. Additionally, cutting off the 

other branch can also slightly change the refrigerant charge in the system based on 

whether the system has been running when the valves are closed. If it has been running, 

some portion of the volume of refrigerant within the sealed branch will be vapor, and 

more will be left in the system. However, the mass of refrigerant actively used during 

operation is largely controlled by the receiver.  

The refrigeration charge was lowered from 12 to 11 oz in order to better 

accommodate the single evaporator configuration. The table legs are now adjustable to 

allow for a steeper tilt on the duct to promote more regular drainage. The prototype is 

shown below in Figure 22. 
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Figure 22. Vapor compression prototype picture. 

 

3.2 Thermo Electric Cooling Prototype Design 

The magnitude of the heat flow and the high temperatures produced on the “hot 

side” of the Peltier element requires that there be a heat sink attached to that side 

which is cooled in some way, the simplest methods being either by fan, or by water 

cooling. The condensation surface must be connected to the “cold side” of the element 

in order to condense any water. Because of this, the logical design was to sandwich the 

element between the heatsink and the condensation surface, with some thermal paste 

in between to ensure good thermal conductivity in the contact areas. Bolts were used to 

secure the sandwich. Attaching the heatsink to the condensing surface via four bolts 
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allows for easy swapping in-and-out of the multiple condensing surfaces. All setups use 

a polycarbonate divider that sits between the heatsink and the condensing surface in 

order to prevent the hot air blowing out of the heatsink from warming up the back of 

the condensing surface. 

The heatsink chosen for this design is a fairly standard cpu heatsink and fan 

combination, the Arctic Alpine 11 Plus. This model uses a pulse-width modulated fan 

that is wired to run on maximum speed at all times. The Peltier element is a TEC1-12706 

from Eathtek, which is rated at 12V 5.8A. The thermal paste is Arctic Silver 5, which is a 

99.9% pure micronized silver paste designed to fill any gaps in the contact area between 

components and provide a highly conductive bridge between them. The Peltier element, 

heatsink, and fan configuration are shown in Figure 23. The full prototype with the 

passive heatsink condensing surface attachment is shown in Figure 24. 

 

Figure 23. Peltier element, heatsink, and fan configuration. 
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Figure 24. TEC prototype with passive heatsink condensation surface attachment. 

The Peltier element is connected to a 13.8V, 10A DC power supply, and draws 

about 3A when air-cooled. The heatsink fan is wired in parallel with the element, and 

draws about 0.36A. The power supply is shown below in Figure 25. 
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Figure 25. Pyramid regulated 13.8V, 10A DC power supply. 

The modularity of this design allows for testing of many different condensing 

surfaces described below. 

 

3.2.1 Aluminum Plate 

An aluminum plate, approximately 10” by 5”, with a thickness of ⅛” has been 

chosen. The thickness of this plate and the higher thermal conductivity of aluminum 

allow this collector to spread the cold area fairly evenly across the plate. The aluminum 

plate attachment is shown below in Figure 26. 
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Figure 26. Aluminum plate collection surface attachment on the TEC prototype. 

3.2.2 Teflon Pan 

The Teflon pan is from a Farberware Cookware Aluminum Nonstick 11-Inch 

Square Griddle, cut to approximately 10” by 5”. The Teflon non-stick coating promotes 

smaller beads of condensation to form on the surface, and for a much “drier” surface 

when the water is wiped from it. The Teflon pan attachment is shown in Figure 27. 

 

Figure 27. Teflon pan collection surface attachment on the TEC prototype. 

https://www.amazon.com/gp/product/B00AS2IJSU/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00AS2IJSU/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1
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3.2.3 Fanned Plate 

Two aluminum plates are stacked together and fan out from the center of the 

aluminum base plate. This provides more surface area than a regular plate, but less 

airflow restriction than the heatsink. The fanned plate attachment is shown below in 

Figure 28. 

 

Figure 28. Fanned plate collection surface attachment on the TEC prototype. 

3.2.4 Passive Heatsink 

An Arctic Alpine M1, meant for cooling CPUs, has been selected as a passive 

heatsink. It has relatively wide fin spacing for efficient natural convection and the largest 

surface area of any of the condensing surfaces. The heatsink attachment is shown above 

in Figure 24. 
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Chapter 4: Experimentation 

4.1 Experimental Goals 

The purpose of the experiments is to determine how much water can be 

collected per amount of energy consumed, and how different environmental conditions 

and device configurations affect this collection rate.  

 

4.2 Vapor Compression Prototype Testing 

The vapor compression prototype is placed in the humid environment outside. 

The power strip is plugged into a standard 120V AC socket, with a wattmeter between 

the power strip and wall. All valves are opened (to maximum in the case of the 

expansion valves) and the evaporator fans are turned on from the power strip. Fans are 

set at the desired speed. If desired, the regeneration hood is assembled over the duct. 

After all this is in place, the wattmeter is set to start counting the energy usage in 

kilowatt hours, and the compressor is turned on from the power strip. After a brief 

warm up period (approximately 5 minutes) the cut-off valve is closed for a single 

evaporator set experiment, or left open for a double evaporator experiment. The 

expansion valves are then closed to dial in the vaporization pressure and temperature in 

the evaporators. Water drips from the spigot and is collected in a graduated cylinder, 

where the collected amount of water is measured against the consumed power at 

several points during the test. Temperature and relative humidity are also recorded at 

this time. Once the test is completed, the components are returned to their starting 

states in reverse order.  
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Many of the environmental variables of experimentation are determined by 

the weather (temperature, humidity, wind, fog). As a result, tests are performed in a 

variety of temperature and humidity conditions.  

Tests are performed on Cal Poly campus, in San Luis Obispo, Atascadero, 

Morro Bay, and Santa Margarita at all times during the night and early morning during 

the maximum relative humidity condition. Flowrate is varied for the tests in order to 

generate the curves seen below. Data is taken at a fairly constant vapor-compression 

cycle operation point, with a high-side pressure of 620 kPa, and a low-side pressure of 

138 kPa, with a saturation temperature of 25°F. This operation point is noted by the 

formation of frost on the first 2-3 coils in the back evaporators. The data for this 

experiment represented in Figure 29 below can be found in Appendix A, Table 1A. 
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Figure 29. Vapor compression prototype collection rate as a function of flowrate. 

Figure 29 shows the steady state results for high humidity (85-100%) tests 

performed in the single side evaporator configuration, with pulsed and unpulsed 

tests. “Pulsed” denotes an operating condition where the fans were turned up to 

maximum speed for 10 seconds every twenty minutes in order to free up 

condensation surface area by dislodging condensate droplets from the evaporator. 

The steady state rate is the amount of water collected divided by the power used 

from the first drop collected to the end of the test period. The steady state collection 

rate is meant to give an idea of how the prototype would perform during long periods 
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of operation. As a reference, the startup throughout all of the tests averaged about 

0.17 kWh of energy usage, and lasted 25-30 minutes.  

Trendlines are added in order to show the approximate relationship between 

flowrate and collection rate. There is a slight curve in the collection rate lines, 

suggesting that there may be a flowrate that results in the maximum collection rate. 

This maximum occurs at 0.081 m3/s for the unpulsed trials and 0.073 m3/s for the 

pulsed trials. It is suspected that this maximum is due to the flowrate providing an 

optimal balance between providing maximum water vapor movement through the 

system while still allowing enough time for the air to be cooled to the dew point and 

the water to be condensed. Too low a flowrate results in less water moving through 

the evaporators than they can condense, wasting cooling energy, while too high a 

flowrate results in wasting cooling energy to cool air that moves too quickly through 

the evaporators to reach the dewpoint. In thick fog conditions, it is expected that this 

maximum would shift to the right (higher flowrate), as there would be no need to 

allow for more time to cool the air to the dewpoint, as it is already at the dewpoint, 

and laden with liquid water. 

The graph also shows that pulsing yields a higher water collection rate. It is 

observed that after a pulse, a small surge of water leaves the evaporators. Increasing 

the flowrate causes many of the condensed water droplets on the evaporator fins to 

start rolling and collecting other droplets before falling off of the fins. This frees up 

that space for more condensation to occur, as condensation is easier on a bare 

surface than on other droplets. The increase in collection rate achieved in pulsed trials 
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compared to unpulsed trials drops slightly at higher flowrates. Higher flowrates 

promote more droplet movement, making a pulse less effective relative to lower 

flowrate trials. 

 

4.3 TEC Prototype Testing 

4.3.1 Surfaces Comparison  

The TEC prototype collection surface is placed vertically facing a Pureguardian 

H4500 ultrasonic humidifier. The TEC and cooling fan is connected to a DC power 

source, and powered at 12V 6A. The power source is then plugged into a wattmeter, 

and into wall socket. The humidifier is set so that the humidity dial is pointing straight 

right. This setting provides enough moist air to simulate foggy conditions without 

condensation occurring on nearby non-cooled surfaces. This condition is intended to 

ensure that the test surfaces themselves have as strong an impact as possible on the 

experiment results. The humidifier jet of humid air is pointed so that it directly hits the 

center of the collection surface, pluming outward as shown in Figure 30. Water drains 

into a plastic funnel, and into a collection container. At the end of the test, temperature 

and humidity measurements are taken, and the water in the collection container is 

transferred to a graduated cylinder and measured. The water collected is then 

measured against the consumed power. For this experiment, the surfaces being tested 

are an aluminum plate, a Teflon coated pan, a fanned aluminum plate, and an aluminum 

heatsink. The aluminum plate and Teflon pan have test trials where the surface is wiped 

clear with a rubber wiper every hour, denoted as “cleared” hereafter. Tests where the 
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surface is left untouched are “uncleared.” Table 2 and Figure 31 show the average 

collection rate of the tested surfaces. Table 2, and following tables, also include the 

collection rate in kWh/m3, a common unit for water collection, though this unit is not 

represented in the associated figures. Figure 32 shows the surface area of the surfaces. 

 

Figure 30. TEC prototype experiment humidifier flow example with heatsink collection 

surface. 

Table 2. Average Collection rates for uncleared and cleared trials of TEC Prototype 
surfaces: aluminum plate, Teflon Pan, fanned plate, and heatsink. 

Aluminum 
Plate 

Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

Uncleared 0.058 0.009 17130 2594 

Cleared 0.067 0.012 15034 2674 

Pan 
    Uncleared 0.074 0.006 13511 1137 

Cleared 0.087 0.009 11524 1212 

Fanned Plate 
    Uncleared 0.103 0.013 9747 1238 

Heatsink 
    Uncleared 0.123 0.009 8133 567 
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Figure 31. Average Collection rates for uncleared and cleared trials of TEC Prototype 

surfaces: aluminum plate, Teflon Pan, fanned plate, and heatsink. 

 

Figure 32. Surface areas of the TEC Prototype surfaces: aluminum plate, Teflon Pan, 

fanned plate, and heatsink. 

Figure 31 shows a steady increase in collection rate across the tested surfaces. 

The increase from the aluminum plate, to the fanned plate, to the heatsink as the 

surface area increases is to be expected. However, when compared to Figure 32, 
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collection rate does not increase at the same rate as the surface area. There is likely a 

plateau where increased surface area is no longer an effective way to increase collection 

rate. It makes sense that the TEC element can only efficiently support so large a surface 

area. This is supported by the observation that in the aluminum plate, pan, and fanned 

plate experiments, the condensation occurred most strongly around the center of the 

Peltier element, and slightly waned towards the edges of the collection surface. Given 

the effectiveness of the heatsink, it seems a compact surface area distribution focused 

around the cooling side of TEC element is highly efficient. It is also possible that having 

too large a surface area could be detrimental to water collection rate in less than 100% 

humidity conditions due to a failure to reach the dew point in parts of the collection 

surface, though this was not observed in any of the trials of this experiment. 

The Teflon pan collects approximately 29% more water than the aluminum plate, 

despite being roughly the same surface area. This is likely because the Teflon coating 

causes the condensate to bead up much more than on the aluminum plate, leaving 

more of the pan’s surface area clear for condensation, as well as creating more total 

surface area (water included) for condensation. A comparison of the surfaces during 

condensation is shown below in Figure 33. This is doubly important because water 

condenses more easily on a clear surface than on itself. Clearing also results in an 

approximately 15% increase in collection rate in both the aluminum plate and Teflon 

pan trials, as removing the water from the surface frees it up for further condensation. 

However, the ranges of uncertainty of the cleared and uncleared trials overlap, making 

the result inconclusive. 



41 
 

 

 

Figure 33. Teflon pan (left) and aluminum plate (right) surface comparison during 

condensation. 

 

4.3.2 Water Cooling 

Water cooling is considered in order to explore the upper bound of TEC 

prototype performance, and the possible benefits of using condensate regeneratively 

for heat rejection. For water cooling, the hot side heatsink of the TEC is submerged in a 

water bath (without the fan) using a sealed plastic sheet divider. A pump is placed in the 

water bath and directed to shoot a constant jet of cold water at the center of the 

heatsink. Ice is added to the bath to ensure a constant freezing temperature (0°C, 32°F). 

A full sized 11 inch Teflon pan is used in this experiment in order to help hold the water 

bath together. Other parameters are the same as the fan-cooled setup. Figure 34 shows 

the setup. 
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Figure 34. Water cooled TEC prototype experimental setup. 

Table 3 and Figure 35 show the average water collection rate and temperature 

difference between the pan surface and the ambient. 

Table 3. Average collection rate and temperature difference between the fan cooled 

and water cooled experiments. 

Aluminum 
Plate 

Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

Average 
dT (K) 

Uncertainty 
(±) 

Fan Cooled 0.055 0.010 18130 3199 4.7 0.3 

Water Cooled 0.109 0.016 9171 1315 8.1 1.0 
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Figure 35. Comparison of collection rates and temperature differences between the 

collection surface and ambient for fan-cooled and water-cooled Teflon pan setup. 

The data above shows a 97.7% increase in collection rate when using water 

cooling, and an average 3°C drop in cold-side temperature. However, this experiment 

did not include the power consumption of the water pump, nor the energy required to 

keep a water source at freezing temperatures. This was done to demonstrate the 

potential for improvement in the operating conditions of the TEC unit. In fact, if a 

freezing water source was available, it would probably make more sense to simply run 

that water through a heat exchanger, rather than use a TEC as an intermediary. That 

being said, it is clear that the rate of heat rejection on the hot side of the TEC has a very 

significant effect on its efficiency and the rate of water collection. This experiment helps 

demonstrate what the TEC prototype might be capable of when operating at near 

maximum efficiency. 

It is also worth noting that the collection rate for the fan cooled test is lower 

than that of the previous test. This is because the TEC was switched for this experiment, 
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and this new unit exhibited below average performance. Despite this, it is likely that this 

same trend would be seen in other TEC units, and it could be used to predict the 

behavior of those units, subject to further testing. 

 

4.3.3 Tilted Heatsink: Split Flow 

The TEC prototype is set up in the same fashion as the normal fan-cooled test, 

with the humid air directed at the base of the heatsink, but it is tilted about the fan’s 

axis by 0, 15, 30, 45, 60, 75, and 90°, with vertical fins being 0°. This is done by holding 

the plastic base plate in a vise. Before water collection is measured, the heatsink is 

cleared of water using a 3/16” hex wrench, scraped between the fins. The purpose of 

this test is to determine the effect of fin orientation on water collection rate. An 

example of this set up with the 75° angle is shown below in Figure 36. 
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Figure 36. Tilted heatsink experimental setup with 75° tilt. 

Table 4 and Figure 37 shows the average collection rates for the different angles 

tested in the experiment. 

Table 4. Average collection rates for the heatsink split flow, tilted at 0°, 15°, 30°, 45°, 

60°, 75°, and 90°. 

Angle(°) 
Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

0 0.132              0.018  7577 1026 

15 0.157              0.018  6364 724 

30 0.177              0.018  5652 571 

45 0.213              0.018  4696 394 

60 0.249              0.018  4020 289 

75 0.234              0.018  4280 327 

90 (9 hr) 0.203              0.018  4938 436 

90 (24 Hr) 0.127              0.018  7879 1110 
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Figure 37. Average collection rates for the heatsink tilted at 0°, 15°, 30°, 45°, 60°, 75°, 

and 90°. 

Figure 37 shows a maximum collection rate occurring at 60°, but it could 

realistically occur anywhere between 45° and 75°. This is likely due to a combination of 

condensate bridging and flow profile, which is discussed more thoroughly following the 

Tilted Heatsink: Through Flow experiment (4.3.4). Starting at 45°, condensate bridging 

between fins is observed. The amount of water bridging between fins increases as the 

tilt angle increases. At 90° (horizontal), the entire space between fins eventually fills 

with water. This is shown in Figures 38-41.  
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Figure 38. Tilted heatsink split flow condensate bridging at 45°.  

 

Figure 39. Tilted heatsink split flow condensate bridging at 60°. 
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Figure 40. Tilted heatsink split flow condensate bridging at 75°. 

 

 

Figure 41. Tilted heatsink split flow condensate bridging at 90°. 

Note that Figure 37 has two columns for the 90° tilt angle, one with a 9-hour test 

duration and one with a 24-hour test duration. The 9-hour test has a much higher 

collection rate because during the test the heatsink never reached maximum capacity 
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(when space between fins is completely filled, about 230 ml), and all of the water 

collected during the test was held by the heatsink for the entire test duration. In other 

words, nearly all the water collected was collected at the end of the test when the 

heatsink was drained into the graduated cylinder for measuring. The 24-hour test has a 

much lower collection rate because the heatsink did reach maximum capacity around 

the 10-hour mark, where it started collecting at approximately 0.026 L/kWh. Still, the 

vast majority of the water was collected by draining the heatsink at the end of the test. 

This shows that the horizontal orientation is highly inefficient over long periods of time, 

but effective over the short periods, such as overnight, that a device like this would 

likely be running. More importantly, it suggests that reaching capacity, or too much 

bridging, is detrimental to collection rate. 

 

4.3.4 Tilted Heatsink: Through Flow 

The TEC prototype is set up in the same fashion as the normal fan-cooled test, 

but it is tilted about the short axis of the base plate by 0, 15, 30, 45, 60, 75, and 90 

degrees, with vertical fins being 0 degrees. This is done by holding the plastic base plate 

in a clamp, which is held by a vise. An example of this set up with the 0° angle is shown 

below in Figure 42. The purpose of this test is to determine if a different flow regime still 

produces the same trend shown by the split flow tilted heatsink setup. 



50 
 

 

Figure 42. Tilted heatsink through flow experimental setup with 45° tilt. 

Table 5 and Figure 43 shows the average collection rates for the different angles 

tested in the experiment. 
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Table 5. Average collection rates for the heatsink through flow, tilted at 0°, 15°, 30°, 45°, 

60°, 75°, and 90°. 

Angle(°) 
Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

0 0.135              0.018  7429 987 

15 0.155              0.018  6471 748 

30 0.180              0.018  5561 553 

45 0.195              0.018  5122 469 

60 0.210              0.018  4755 404 

75 0.221              0.018  4519 365 

90 (12 Hr) 0.159              0.018  6294 708 

90 (24 Hr) 0.130              0.018  7709 1062 

 

 

Figure 43. Average collection rates for the heatsink tilted at 0°, 15°, 30°, 45°, 60°, 75°, 

and 90°. 

This flow setup showed a similar trend, but with an overall lower collection rate 

and less bridging between fins. Condensate bridging between fins now starts at 60°, 

increasing in severity as the tilt angle increases. At 90° (horizontal), all but a small 
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passage through the center of the heatsink fills, restricting the airflow through the 

heatsink, until eventually this fills up as well. This is shown in Figures 44-47. 

 

Figure 44. Tilted heatsink through flow condensate bridging at 60°. 

 

Figure 45. Tilted heatsink through flow condensate bridging at 75°. 
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Figure 46. Tilted heatsink through flow condensate bridging at 90° (12 Hr). 

 

 

Figure 47. Tilted heatsink through flow condensate bridging at 90° (24 Hr). 
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Based on both tilted heatsink tests, it seems that the optimal angle for a heatsink 

of this geometry is between 60 and 75 degrees. The flow direction has an effect on the 

overall performance of heatsink, but does not seem to have a significant effect on the 

trend produced by tilting. The increased performance around the 60°-75° range is 

possibly due to two effects: the bridging between fins and the weight of the condensate 

laden air and water vapor.  

Slight bridging between fins could be beneficial because it creates more surface 

area to condense on. This extra surface area (of water) also utilizes the heat transfer 

that is normally wasted on cooling the condensate before it drains off. The steeper the 

angle of the fins (from the horizontal), the less bridging can be sustained before the 

weight of the water overcomes the surface tension, and the water runs off. 60°-75° is 

possibly the optimal range where the bridging is small enough to create an increase in 

surface area and minimal flow reduction or blockage. This result is specific to this 

heatsink geometry, as different fin spacing would change the angle at which this “sweet 

spot” exists, if it exists at all. Some larger fin spacings would prevent bridging from 

occurring at all, while smaller ones might bridge even when vertical. Additionally, the 

flow through the heatsink can also affect bridging. Faster flow can prevent the 

formation of bridges, as seen in the bridging at 45° in the split flow, but not in the 

through-flow test, as well as the passage formed in the 90° (12 Hr) through-flow test. 

However, this effect would not explain the increase seen in the non-bridging cases (15-

30°), which is likely due to a more beneficial airflow pattern. 
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Angling fins toward the horizontal could have a beneficial effect because the 

density of the oversaturated air makes it sink, relative to the normal ambient air. By 

angling the fins, it causes this heavier air to slide across the fin surface as it falls out of 

the heatsink. This might produce a longer contact time between any arbitrary packet of 

air and the fin surface, or it might create a boundary layer effect conducive to 

condensation. 

 

4.3.5 Flat Tilted Surface 

The TEC prototype is set up with the Teflon pan condensation surface, in similar 

fashion as the earlier surface experiments. An aluminum duct is now used to channel 

the moist air from the humidifier to the condensation surface, in order to provide as 

consistent an angle as possible for the introduction of humid air relative to the pan 

surface. An aluminum foil funnel is added to the base of the pan to direct all condensate 

into the collection graduated cylinder. A line of thread runs from the tip of the funnel to 

a nut submerged in the graduated cylinder, creating a gentle transfer of water with no 

splashing. The Teflon pan is used in this experiment (as opposed to the aluminum plate) 

because the way that the condensate drips off of the surface should change with 

surface orientation, and the Teflon coating should exacerbate this effect, making any 

observable trends more prominent.  The prototype is tilted such that the condensation 

surface is upward facing at a 15 degree angle from the horizontal, and then rotated 

down in 15 degree increments for each test until it is downward facing at a 15 degree 

angle from the horizontal. Several tests are performed at each angle.  
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Angles closer to the horizontal are omitted for this test due to difficulties 

managing accurate condensate collection. For the angles 0-15 degrees, it becomes 

difficult to create the consistent incidence angle of humid air without also introducing 

condensate drip from the aluminum duct. For the angles 165-180 degrees, the 

condensate no longer runs down the pan surface consistently, and instead drips from 

the pan over a wide area. Collecting drips over such a wide area results in an excess of 

splashing and re-evaporation. An example of the 105 degree setup is shown in Figure 

48. The humidifier unit has been changed to a Vicks Ultrasonic Humidifier Model 

V5100N due to a malfunction in the former unit. 

The purpose of this experiment is to determine the effect of surface orientation 

on a single-side collection surface in isolation. The results can then be compared to the 

tilted heatsink experiments to determine if the results observed are simply a 

combination of the effects of an upward and downward facing surface, or if some other 

effect, such as bridging, has any significant impact. 
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Figure 48. Tilted surface experimental setup with 105° tilt. 

Table 6 and Figure 49 show the average collection rates for the different angles 

tested in this experiment.  
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Table 6. Average collection rates for the pan surface tilted from 15° to 165° in 15° 

intervals. 

Angle(°) 
Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

15 0.319             0.012  3134 113 

30 0.239             0.012  4192 202 

45 0.213             0.012  4704 255 

60 0.180             0.012  5562 356 

75 0.136             0.012  7339 620 

90 0.125             0.012 7972 732 

105 0.110             0.012 9110 955 

120 0.100             0.012 10024 1157 

135 0.100             0.012 9958 1141 

150 0.071             0.012 13988 2252 

165 0.055             0.012 18217 3820 

 

 

Figure 49. Average collection rates for the pan surface tilted from 15° to 165° in 15° 

intervals. 

Figure 49 shows a maximum collection rate occurring at 15° and steadily 

declining to a minimum collection rate at 165°. The collection rate at 135° happens to be 
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a bit higher than 120°, but is within the uncertainty of the measurement. This is likely 

due to variations in the weather. 

This result might be explained by the flow that is created by a cold natural 

convection surface. While the surface is tilted upward, the cold humid air wants to cling 

to the surface, providing more time for condensation, while when it is tilted down, the 

cold humid air wants to fall away from the surface, providing less time for condensation. 

This same effect could also be caused by the nature of the experimental setup, as the 

humid air and suspended liquid water mix that is produced by the humidifier is heavier 

than the surrounding air, and because the prototype is not completely enveloped by the 

humid air, it creates a flow similar to that of the natural convection. The results are 

likely an expression of the combination of these effects.  

Figure 50 shows the results from the first tilted heatsink experiment, with each 

angle side by side with the combination of tilted surface angles that would be combined 

to create that same angle. For example, the 30° tilt on the heatsink (with each fin having 

two sides) is paired with a combination of the 60° and 120° angles from Figure 49; two 

single sides representing the upward and downward facing sides of the heatsink fin. Due 

to the difference in surface area and performance for the two experiments, the 

collection rates are represented as a percentage difference from the collection rate at 

vertical position for that experiment. For the tilted surface experiment, the two angles’ 

percent differences are individually calculated, and averaged to find an estimated 

combined effect to compare to the double-sided fin of the heatsink.  
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Figure 50. Percentage of vertical collection of the tilted heatsink and associated 

combined angles of the tilted surface experiments, from 0° to 75° from the vertical. 

Figure 50 shows a separation, but similar trend, between the tilted heatsink and 

surface combination between 0° and 45°, which suggests that the surface combination 

is a reasonable approximation of the fin for these angles. However, at 60° there is a 

significant departure between the two. Note that 60° is also when significant 

condensate bridging between fins starts to occur in the tilted heatsink experiment. 

Given that the tilted surface experiment does not experience this effect at all, this might 

explain the departure shown at 60° in the above figure. At 75°, the departure is much 

less severe, possibly indicating that bridging is less effective at this angle. This seems to 

lend credence to the theory that some amount of bridging increases water collection 

rate presented in the tilted heatsink results. 
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Clearly the combined surface is not an excellent approximation of the heatsink 

fin. A possible reason for the discrepancy between the heatsink and surface 

combination values shown is that the heatsink fins share one source of heat transfer 

between both sides of the fin, while the combined surfaces each have one source. This 

means that for the combined surfaces, each side gets an equal amount of power, 

regardless of how effective each side is. On the other hand, the heatsink fin would 

inherently distribute more power to the more effective side, as more water collected is 

likely associated with more heat transfer in this case. It makes sense that distributing 

more power to the stronger, upward facing side would result in the more effective 

water collection shown by the heatsink in Figure 50 from 0° to 45°. Granted, this 

hypothesis would suggest that the gap between the two would be smaller at the lower 

angles, and grow as the angles grew larger, because the difference in power distribution 

is less important when the sides are nearer in effectiveness. This effect is not 

represented in the calculation shown by Figure 50.  

 

4.3.6 Tilted Heatsink Timeline 

The TEC prototype is set up in the same fashion as the normal fan-cooled test, 

but it is tilted with respect to the fan’s axis by 75° (with vertical fins being 0°). This is 

done by holding the plastic base plate in a vise. Tests are performed with varying 

durations, from 1 to 9 hours in one hour increments. The purpose of this test is to 

determine the effect of collection duration on water collection rate for a tilted heatsink, 

specifically when bridging between fins is present. Longer tests result in more 
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developed bridging, so this experiment will help to isolate the effects of bridging. A 75° 

angle is used for this experiment because of the prominent bridging effect observed at 

this angle.  An example of this set up with the 75° angle is shown below in Figure 51. 

 

Figure 51. Tilted heatsink timeline experimental setup with 75° tilt. 

Table 7 and Figure 52 show the results of this experiment. 
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Table 7. Average collection rates for 75° tilted heatsink sorted by total collection time 

from 1 to 9 hours. 

Time 
(h) 

Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

1 0.104 0.016 9615 1439 

2 0.125 0.016 8028 1003 

3 0.120 0.016 8333 1081 

4 0.156 0.016 6415 640 

5 0.157 0.016 6388 635 

6 0.148 0.016 6763 712 

7 0.139 0.016  7171 800 

8 0.142 0.016  7018 766 

9 0.130 0.016  7698 922 

 

 

Figure 52. Average collection rates for 75° tilted heatsink sorted by total collection time 

from 1 to 9 hours. 

 

Figure 52 shows a relatively low collection rate for 1-3 hour tests, a minor peak 

in the 4-5 hour range, and a steady drop off from 6-9 hours. There is some unexpected 
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variance for the 3 and 8 hour test durations, but this is due to environmental factors, 

and the window of uncertainty covers the expected average collection value. In previous 

experiments it was observed that a clear surface would collect water better than a wet 

one, but also that bridging might have a positive effect on water collection. It is possible 

that the former effect is prominent in the 1 and 2 hour tests, and the latter is prominent 

in the 4 and 5 hour tests. The dip observed for the 3 hour test may be because the 3 

hour test doesn’t benefit as much from either effect, but environmental variance may 

be just as likely. Figures 53-58 show the state of bridging at the 1-6 hour marks, 

respectively. Bridging after the 6 hour mark remained relatively unchanged. 

 

Figure 53. Tilted heatsink timeline condensate bridging at the 1 hour mark. 
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Figure 54. Tilted heatsink timeline condensate bridging at the 2 hour mark. 

 

Figure 55. Tilted heatsink timeline condensate bridging at the 3 hour mark. 
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Figure 56. Tilted heatsink timeline condensate bridging at the 4 hour mark. 

 

Figure 57. Tilted heatsink timeline condensate bridging at the 5 hour mark. 
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Figure 58. Tilted heatsink timeline condensate bridging at the 6 hour mark. 

The amount of condensate bridging rapidly increases from 1-4 hours, and slowly 

tapers off to a fairly constant value after 6 hours. When considered with the collection 

data showing a maximum collection rate occurring at 4-5 hours, this suggests that the 

bridging may be most beneficial when just reaching the point at which its growth starts 

to slow. 

Every time the heatsink is cleared of water prior to taking a measurement, some 

amount of water is left on the fins and the clearing tool (hex wrench). Assuming that the 

amount of water lost this way is a constant amount, this affects the shorter tests 

significantly more than the longer ones, as the amount lost is a greater percentage of 

the total amount collected. While including this effect is important when looking at 

overall efficiency, if the effect of bridging is to be isolated, it should be excluded. Table 8 
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and Figure 59 below show the data from Figure 53 if a constant 2mL of collected water 

is added to the average, an approximation of what is lost on the heatsink and hex 

wrench when clearing it. 

Table 8. Average collection rates for 75° tilted heatsink sorted by total collection time 

from 1 to 9 hours with approximate 2mL clearing loss added into the average collection 

amount. 

Time 
(h) 

Average 
L/kWh 

Uncertainty 
(±) 

Average 
kWh/m3 

Uncertainty 
(±) 

1 0.144 0.016 6944 772 

2 0.145 0.016 6877 757 

3 0.134 0.016 7469 893 

4 0.166 0.016 6029 582 

5 0.165 0.016 6077 591 

6 0.155 0.016 6464 669 

7 0.145 0.016 6890 760 

8 0.148 0.016 6763 732 

9 0.125 0.016 8018 1029 
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Figure 59. Average collection rates for 75° tilted heatsink sorted by total collection time 

from 1 to 9 hours with approximate 2mL clearing loss added into the average collection 

amount. 

Figure 59 shows a much tighter spread of collection rates than in Figure 52, but 

the general trend stays the same. The tests at 1 and 2 hours come up significantly, but 

the peak still occurs at 4-5 hours, and the gradual drop off is still present. However, with 

this representation, it could be argued that the size of the condensate bridging that 

grows over the test duration has a relatively minor effect on the collection rate, 

especially given the uncertainty present. 
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4.4 Uncertainty 

The uncertainty values used for all experiments and the devices used to measure 

each quantity are shown in Tables 9 and 10 below. 

Table 9. Measured uncertainties and measuring devices for the vapor compression, TEC 

surface and water cooling experiments. 

 

RH (%) T(°F) H2O (ml) H2O (L) kWh L/kWh 

Symmetric 
Uncertainty 

<90% 2.50% 
1 5 0.005 0.005 

Calc 
>90% 5.00% 

Measuring 
Device 

Fluke 971 Temperature 
Humidity Reader 

Graduated Cylinder 
Kill A Watt EZ 
Watt Meter 

 

Table 10. Measured uncertainties and measuring devices for the TEC tilted heatsink, 

tilted surface, and tilted heatsink timeline experiments. 

 

Angle  
(°) 

T  
(°F) 

Ts  
(°F) 

dT 
(°F) 

H2O 
(ml) 

H2O 
(L) 

kWh 
Time 
(h:m) 

L/kWh 

Symmetric 
Uncertainty 

2 1.50% 1.50% 

Calc 

5 0.005 0.005 0:01 

Calc 
Measuring 

Device 
Protractor 
and Level 

Fluke 62 Max IR 
Thermometer 

Graduated 
Cylinder 

Kill A Watt EZ 
Watt Meter 

 

 The majority of the uncertainties shown in Tables 9 and 10 are prescribed by the 

device manufacturer or by the resolution of the device reading. However, the 

uncertainties of the angle and water measurements have been adjusted slightly. The 

uncertainty of the angle measurement is raised to ±2°, despite the resolution of the 

protractor being 1°, because the addition of the level adds some uncertainty to the 

measurement. The uncertainty of the water measurement is set to ±5ml. This is the 

standard for a graduated cylinder with a resolution of 10ml, but the water level 

measurements in the experiment were taken as a difference of two measurements, 

which would result in higher uncertainty. However, the way the water runs down the 
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thread into the cylinder creates a very flat fluid surface, almost entirely without 

meniscus, which can be read more accurately than ±5ml. This is shown in Figure 60 

below. Given the sharpness of the water line, it seems reasonable that it could be read 

to within 2.5ml, and that the total uncertainty could fall under ±5ml. 

 

Figure 60. Graduated cylinder reading 866±2.5ml of water. 

For all experiments, the random error far outweighed the instrumental error, 

and so the random error is what is reported and used in the error bars shown on the 

figures. This is likely due to the uncontrolled temperature and ambient humidity of the 

experiments, making each trial unique. Additionally, the error used for each angle trial 

in the relevant experiments is set to the largest random error for any angle trial of the 

entire experiment. This is a conservative measure based on the assumption that the 
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random error of any given trial could have been increased by including potentially more 

varied trials, up to a “worst case scenario,” which is this case is approximated by the 

experiment angle with the greatest random error. For example, in the tilted surface 

experiment, the error is set to ±0.012 L/kWh, which is the random error of the 30° trial 

average, but it is reasonable to assume that given more trials, this level of variance 

could have appeared in any of the other angle trials as well. This reflects the suspicion 

that if another angle in the experiment has a much lower random error, it may be due 

to a random occurrence of high precision, but not necessarily high accuracy. 
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Chapter 5: Conclusions and Recommendations 

Concerning the economic viability of active atmospheric water collection, the 

results from these vapor-compression and TEC prototypes are unfavorable in the 

current form. The experiments show an approximate maximum collection rate of 1.25 

L/kWh for the vapor compression prototype, and 0.318 L/kWh for the thermoelectric 

cooling prototype; well below other methods of fresh water collection, most notably the 

315 L/kWh provided by reverse osmosis desalination. Even in the most favorable 

conditions, the collection rate from these prototypes is orders of magnitude lower than 

that of desalination or groundwater. Water collected by the vapor compression 

prototype is significantly more expensive than tap water, though it competes with 

bottled water. If space is not a concern, passive collection is likely a more viable 

alternative as well. However, these devices do not require the immense capital 

investment or infrastructure of desalination or ground water. This makes it uniquely 

suited for situations where the capital investments required or infrastructure of other 

methods are prohibitive. Some example situations include shorter required collection 

periods, such as emergency situations or times of drought; areas without access to 

plentiful ground water resources or direct access to the sea; or areas without the capital 

to invest in larger water collection endeavors. 

While the TEC prototype’s water collection rate efficiency is certainly poor in 

comparison to the vapor compression prototype, it does present some interesting 

results. The surfaces experiment shows that a Teflon coating can increase water 

collection by up to 29% from standard aluminum, and that clearing the surface can 
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improve collection by approximately 15%. The heatsink tilt experiment shows that a tilt 

angle of between 60-75° can increase water yield by up to 89% in certain conditions. 

The tilted surface experiment shows that this increase can likely be attributed to a 

combination of a more beneficial flow pattern, and a beneficial effect of condensate 

bridging between fins. The heatsink timeline experiment suggests that while the effect 

of bridging may be minor, that there is some optimal bridging state possible for a given 

geometry. These results suggest that for any given collection surface geometry (namely 

heatsinks) there is some optimal positioning, flow profile, and surface coating that will 

yield the most efficient performance. However, the effects of these parameters’ 

extreme dependence on the geometry of the collection surface requires that similar 

experiments be performed on any new geometry in order to determine its unique 

optimal operating parameters. If these parameters were to be applied to a more 

efficient device, like an optimized vapor compression unit, the impact on performance 

could be significant. 

The experimental setup and conditions for these experiments were limited by 

loosely controlled environmental conditions and limited resources, and some 

recommendations follow. A tightly controlled chamber to more accurately represented 

foggy conditions would greatly improve the accuracy of the experiment. Given that flow 

profile is such an important parameter, mimicking the flow profile of a fog bank as 

closely as possible would be ideal. Additionally, eliminating a lot of the environmental 

variability would go a long way towards reducing uncertainty and producing more 

accurate results. Using more powerful prototypes, or several in an array, would serve to 
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mitigate some of the uncertainty associated with collecting and measuring small 

quantities of water. This would also allow for much shorter experiment durations. In the 

case of the TEC prototype, it would also allow the TEC elements to be operated at a 

more efficient, lower power usage, and still collect enough water for accurate 

measurement and timely experiments. Gathering data using a data acquisition system 

throughout the experiment would give better insight into the time-dependent behavior 

of the experiment. In tandem with this, an accurate weight measurement device on the 

whole system would allow for measurement of the water collected on the collection 

surface without clearing it, giving a better idea of how much water the surface holds 

over time. Comparing collection rate to the amount of water contained on the collection 

surface in real time could provide a definitive answer to the benefits of water held by 

the condensation surface. This information would be very useful for determining the 

maximum efficiency operating point of a given prototype. Compiling the data from 

several operating points of several collection surfaces could provide insight into how 

best to apply these parameters to existing devices, or how to create new, more efficient 

devices.  
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Appendix A 

Raw Data Tables 

Table A1. Vapor compression prototype high humidity steady state test data. 

 

Relative 
Humidity (%) 

Temperature 
(°F) 

Flowrate 
(m3/s) 

H2O 
(ml) 

kWh 
(SS) 

L/kWh 
(SS) 

kWh/m3 
(SS) 

Si
n

gl
e 

P
u

ls
ed

 

98% 55 0.073 170 0.15 1.13 882 

100% 55 0.073 210 0.19 1.11 905 

100% 55 0.073 170 0.15 1.13 882 

100% 55 0.073 190 0.15 1.27 789 

100% 45 0.080 120 0.10 1.20 833 

88% 60 0.073 230 0.19 1.21 826 

88% 60 0.073 200 0.18 1.11 900 

88% 60 0.073 190 0.16 1.19 842 

88% 60 0.073 180 0.17 1.06 944 

90% 58 0.050 170 0.16 1.06 941 

90% 58 0.050 170 0.17 1.00 1000 

90% 58 0.050 180 0.16 1.13 889 

90% 58 0.050 150 0.14 1.07 933 

90% 58 0.050 190 0.16 1.19 842 

95% 61 0.061 155 0.14 1.11 903 

94% 58 0.061 170 0.15 1.13 882 

94% 58 0.061 135 0.12 1.13 889 

94% 58 0.061 170 0.15 1.13 882 

98% 56 0.061 215 0.18 1.19 837 

98% 56 0.061 186 0.16 1.16 860 

98% 56 0.061 204 0.18 1.13 882 

98% 56 0.061 150 0.13 1.15 867 

98% 56 0.061 260 0.22 1.18 846 

Si
n

gl
e 

U
n

p
u

ls
ed

 

88% 46 0.073 250 0.26 0.96 1040 

100% 47 0.073 260 0.29 0.90 1115 

100% 52 0.091 100 0.10 1.00 1000 

100% 52 0.091 220 0.20 1.10 909 

100% 52 0.091 130 0.13 1.00 1000 

100% 51 0.091 130 0.15 0.87 1154 

100% 51 0.091 255 0.23 1.11 902 

100% 51 0.080 235 0.22 1.07 936 

100% 51 0.080 110 0.10 1.10 909 

100% 51 0.073 160 0.16 1.00 1000 
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100% 51 0.073 250 0.23 1.09 920 

100% 51 0.073 180 0.18 1.00 1000 

97% 51 0.061 205 0.25 0.82 1220 

97% 51 0.061 115 0.14 0.82 1217 

97% 51 0.061 260 0.27 0.96 1038 

97% 53 0.061 70 0.06 1.17 857 

97% 53 0.061 260 0.23 1.13 885 

85% 55 0.061 220 0.26 0.85 1182 

98% 55 0.073 170 0.15 1.13 882 

 



 
 

Table A2. Surfaces test data. 

Aluminum Plate RH (%) T(°F) H2O (ml) kWh L/kWh Avg L/kWh Avg kWh/m3 

No Clear 

58% 71 30 0.40 0.020 
  62% 62 15 0.19 0.021 
  48% 67 20 0.39 0.014 
  65% 67 20 0.38 0.014 
  66% 63 25 0.47 0.014 
  44% 74 20 0.51 0.010 0.015 64843 

Clear 

80% 55 20 0.19 0.028   
 50% 60 20 0.40 0.013 

  60% 62 15 0.45 0.009 
  60% 64 40 0.41 0.026 
  80% 60 32 0.49 0.017 
  35% 67 20 0.42 0.013 0.018 56912 

Pan RH (%) T(°F) H2O (ml) kWh L/kWh Avg L/kWh Avg kWh/m3 

No Clear 

49% 70 30 0.40 0.020 

  48% 68 20 0.55 0.010 
  53% 67 40 0.37 0.029 
  57% 63 20 0.27 0.020 
  49% 70 30 0.31 0.026 
  50% 69 20 0.55 0.010 
  53% 67 40 0.37 0.029 
  57% 63 20 0.27 0.020 
  62% 68 30 0.31 0.026 
  65% 64 23 0.37 0.016 
  50% 73 30 0.39 0.020 
  69% 64 40 0.47 0.022 
  67% 72 20 0.35 0.015 
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80% 65 35 0.39 0.024 
  66% 65 25 0.45 0.015 
  91% 52 50 0.70 0.019 
  59% 71 30 0.55 0.014 0.020 51144 

Clear 

74% 64 20 0.30 0.018   
 80% 65 30 0.30 0.026 

  81% 65 25 0.28 0.024 
  83% 62 30 0.36 0.022 
  74% 59 35 0.37 0.025 0.023 43623 

Fanned plate RH (%) T(°F) H2O (ml) kWh L/kWh Avg L/kWh Avg kWh/m3 

No clear 

65% 52 32 0.49 0.017 
  51% 77 31 0.38 0.022 
  58% 67 40 0.32 0.033 
  50% 78 39 0.48 0.021 
  48% 74 56 0.35 0.042 
  56% 64 45 0.31 0.038 
  32% 82 50 0.80 0.017 
  40% 75 20 0.20 0.026 0.027 36895 

Heatsink RH (%) T(°F) H2O (ml) kWh L/kWh Avg L/kWh Avg kWh/m3 

No Clear 

55% 62 77 0.60 0.034 
  36% 76 45 0.45 0.026 
  61% 61 81 0.69 0.031 
  35% 78 32 0.29 0.029 
  41% 75 39 0.27 0.038 
  53% 66 31 0.26 0.031 

  56% 63 31 0.22 0.037 0.032 30788 
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Table A3. Water cooling test data. 

Pan RH (%) T(°F) T(°C) Ts(°F) Ts(°C) dT(°F) dT(°C) H2O (ml) kWh L/kWh Avg L/kWh Avg kWh/m3 Avg dT(°C) 

Water 
Cooled 

48% 70 21.1 54 12.2 16 8.9 12 0.23 0.052 
   63% 64 17.8 52 11.1 12 6.7 35 0.28 0.125 
   57% 66 18.9 53 11.7 13 7.2 20 0.20 0.100 
   46% 75 23.9 63 17.2 12 6.7 40 0.34 0.118 
   60% 65 18.3 52 11.1 13 7.2 23 0.14 0.164 
   55% 69 20.6 58 14.4 11 6.1 25 0.23 0.109 
   50% 75 23.9 50 10.0 25 13.9 21 0.22 0.095 0.109 9171 8.1 

Fan 
Cooled 

52% 80 26.7 72 22.2 8 4.4 7 0.18 0.039 
   61% 63 17.2 55 12.8 8 4.4 10 0.14 0.071 
   64% 64 17.8 55 12.8 9 5.0 17 0.28 0.061 
   66% 64 17.8 58 14.4 6 3.3 16 0.29 0.055 
   63% 63 17.2 54 12.2 9 5.0 32 0.55 0.058 
   62% 62 16.7 53 11.7 9 5.0 20 0.44 0.045 
   58% 66 18.9 56 13.3 10 5.6 9 0.16 0.056 0.055 18130 4.7 

  



84 
 

Table A4. Tilted heatsink split flow test data. 

Angle T(F) Ts(F) dT H2O (ml) kWh Time L/kWh Avg L/kWh Avg kWh/m3 

0 73 58 15 112 0.69 7:38 0.162 
  0 76 60 16 85 0.70 8:00 0.121 
  0 70 57 13 40 0.34 3:56 0.118 
  0 73 58 15 105 0.83 9:26 0.127 0.132 7577 

15 72 58 14 110 0.70 8:01 0.157 0.157 6364 

30 81 62 19 138 0.78 8:54 0.177 0.177 5652 

45 76 58 18 181 0.85 9:42 0.213 
  45 73 59 14 152 0.72 8:17 0.211 
  45 72 61 11 275 1.28 14:27 0.215 0.213 4696 

60 75 58 17 159 0.72 8:16 0.221 
  60 75 59 16 176 0.72 8:18 0.244 
  60 76 63 13 340 1.21 13:55 0.281 0.249 4020 

75 71 58 13 180 0.81 9:06 0.222 
  75 75 61 14 240 1.04 11:51 0.231 
  75 75 61 14 300 1.21 13:49 0.248 0.234 4280 

90 (9 Hr) 70 53 17 160 0.79 8:54 0.203 0.203 4938 

90 (24 Hr) 75 55 20 264 2.08 23:49 0.127 0.127 7879 
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Table A5. Tilted heatsink through flow test data. 

Angle T(F) Ts(F) dT H2O (ml) kWh Time L/kWh kWh/m3 

0 71 62 9 140 1.04 11:52 0.135 7429 

15 68 59 9 170 1.10 12:27 0.155 6471 

30 70 60 10 205 1.14 12:45 0.180 5561 

45 70 60 10 205 1.05 11:49 0.195 5122 

60 69 59 10 265 1.26 14:07 0.210 4755 

75 69 61 8 270 1.22 13:46 0.221 4519 

90 (12 Hr) 68 54 14 170 1.07 11:56 0.159 6294 

90 (24 Hr) 75 59 16 275 2.12 24:26 0.130 7709 
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Table A6. Tilted surface test data. 

Angle T(F) Ts(F) dT H2O (ml) kWh Time L/kWh Avg L/kWh Avg kWh/m3 

15 72 60 12 210 0.63 11:03 0.333 
  15 68 58 10 215 0.65 11:30 0.331 
  15 70 60 10 200 0.68 12:00 0.294 
  15 67 57 10 210 0.66 11:49 0.318 0.319 3134 

30 60 50 10 130 0.65 10:11 0.200 
  30 58 49 9 180 0.76 11:46 0.237 
  30 60 51 9 200 0.73 11:12 0.274 
  30 56 45 11 150 0.61 9:33 0.246 
  30 55 45 10 120 0.59 8:56 0.203 
  30 57 49 8 140 0.79 11:58 0.177 
  30 59 50 9 215 0.80 12:11 0.269 
  30 62 53 9 220 0.78 12:02 0.282 
  30 56 48 8 150 0.65 9:53 0.231 
  30 56 46 10 240 0.90 13:26 0.267 0.239 4192 

45 61 52 9 185 0.73 10:56 0.253 
  45 57 48 9 132 0.58 8:41 0.228 
  45 60 51 9 130 0.62 9:26 0.210 
  45 57 48 9 165 0.71 10:54 0.232 
  45 59 52 7 150 0.79 12:00 0.190 
  45 59 50 9 120 0.59 9:17 0.203 0.213 4704 

60 62 52 10 125 0.69 10:30 0.181 
  60 62 53 9 138 0.66 9:46 0.209 
  60 61 51 10 135 0.82 12:24 0.165 
  60 60 50 10 115 0.70 10:26 0.164 0.180 5562 

75 59 50 9 105 0.71 10:47 0.148 
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75 59 49 10 80 0.69 10:25 0.116 
  75 57 50 7 87 0.63 9:47 0.138 
  75 59 49 10 88 0.57 10:40 0.154 
  75 57 48 9 90 0.72 11:07 0.125 0.136 7339 

90 68 56 12 90 0.82 10:57 0.110 
  90 71 58 13 105 0.79 10:48 0.133 
  90 69 57 12 95 0.72 9:55 0.132 
  90 62 52 10 103 0.81 12:06 0.127 0.125 7972 

105 64 52 12 90 0.74 11:48 0.122 
  105 63 52 11 70 0.62 10:12 0.113 
  105 64 53 11 62 0.64 10:54 0.097 
  105 62 51 11 70 0.65 10:58 0.108 0.110 9110 

120 64 53 11 68 0.65 11:00 0.105 
  120 71 60 11 65 0.66 11:45 0.098 
  120 76 65 11 58 0.57 10:16 0.102 
  120 73 62 11 65 0.69 13:14 0.094 0.100 10024 

135 67 57 10 105 0.75 10:56 0.140 
  135 65 55 10 90 0.71 10:23 0.127 
  135 66 56 10 100 0.87 12:44 0.115 
  135 65 56 9 100 0.76 11:11 0.132 
  135 65 54 11 85 0.69 10:15 0.123 
  135 63 50 13 45 0.66 9:28 0.068 
  135 60 49 11 60 0.71 10:15 0.085 
  135 62 52 10 52 0.68 10:00 0.076 
  135 63 54 9 75 0.68 10:09 0.110 
  135 63 50 13 45 0.66 9:28 0.068 
  135 60 49 11 60 0.71 10:15 0.085 
  135 62 52 10 52 0.68 10:00 0.076 0.100 9958 



88 
 

150 54 46 8 40 0.59 9:03 0.068 
  150 56 46 10 40 0.60 9:15 0.067 
  150 53 45 8 55 0.85 13:07 0.065 
  150 54 47 7 60 0.85 13:12 0.071 
  150 51 45 6 70 0.84 12:27 0.083 
  150 51 44 7 65 0.91 13:51 0.071 
  150 51 44 7 65 0.84 13:20 0.077 
  150 53 45 8 60 0.77 11:56 0.078 
  150 53 44 9 55 0.79 12:36 0.070 
  150 56 46 10 55 0.84 13:02 0.065 0.071 13988 

165 58 51 7 35 0.73 11:44 0.048 
  165 59 51 8 55 0.64 10:31 0.086 
  165 60 53 7 40 0.75 12:00 0.053 
  165 60 52 8 43 0.83 13:08 0.052 
  165 60 52 8 20 0.71 11:20 0.028 
  165 60 52 8 30 0.71 11:15 0.042 
  165 62 52 10 35 0.66 10:40 0.053 
  165 62 52 10 45 0.75 12:02 0.060 
  165 58 51 7 50 0.78 12:24 0.064 
  165 56 48 8 58 0.93 14:52 0.062 0.055 18217 
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Table A7. Heatsink and combined tilted surface percentage of vertical collection data. 

Angle(°) 
Tilted Heatsink Tilted Surface Combined 

Percentage of Vertical Collection Uncertainty(±) Percentage of Vertical Collection Uncertainty(±) 

0 100% 0% 100% 0% 

15 119% 10% 98% 11% 

30 134% 11% 111% 12% 

45 161% 12% 125% 15% 

60 188% 20% 124% 16% 

75 177% 14% 149% 27% 
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Table A8. Heatsink timeline test data. 

Angle T(F) Ts(F) dT H2O (ml) kWh Time(hours) L/kWh Avg L/kWh Avg kWh/m3 

75 73 63 10 4 0.05 1 0.080 
  75 55 49 6 5 0.05 1 0.100 
  75 57 52 5 5 0.05 1 0.100 
  75 59 52 7 7 0.05 1 0.140 

  75 57 52 5 5 0.05 1 0.100 0.104 9615 

75 74 63 11 18 0.11 2 0.164 
  75 66 55 11 12 0.11 2 0.109 
  75 80 64 16 10 0.10 2 0.100 
  75 76 66 10 13 0.10 2 0.130 
  75 65 59 6 15 0.10 2 0.150 
  75 66 58 8 15 0.10 2 0.150 
  75 64 58 6 13 0.10 2 0.130 
  75 56 50 6 5 0.10 2 0.050 
  75 59 52 7 18 0.10 2 0.180 
  75 59 52 7 12 0.09 2 0.133 
  75 61 55 6 5 0.09 2 0.056 
  75 59 53 6 8 0.09 2 0.089 
  75 60 54 6 10 0.09 2 0.111 
  75 58 53 5 10 0.09 2 0.111 
  75 59 52 7 15 0.09 2 0.167 
  75 61 54 7 10 0.09 2 0.111 
  75 56 48 8 8 0.09 2 0.089 0.125 8028 

75 71 61 10 26 0.17 3 0.153 
  75 74 63 11 15 0.15 3 0.100 
  75 80 64 16 15 0.15 3 0.100 
  75 75 61 14 12 0.15 3 0.080 
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75 68 60 8 32 0.15 3 0.213 
  75 61 55 6 20 0.15 3 0.133 
  75 65 55 10 15 0.15 3 0.100 
  75 64 58 6 15 0.14 3 0.107 
  75 63 53 10 15 0.14 3 0.107 
  75 57 50 7 20 0.13 3 0.154 
  75 60 52 8 10 0.13 3 0.077 
  75 64 56 8 15 0.13 3 0.115 0.120 8333 

75 71 61 10 25 0.22 4 0.114 
  75 76 65 11 30 0.20 4 0.150 
  75 73 65 8 34 0.21 4 0.162 
  75 75 64 11 25 0.18 4 0.139 
  75 66 58 8 40 0.20 4 0.200 
  75 60 59 1 40 0.20 4 0.200 
  75 61 58 3 35 0.21 4 0.167 
  75 63 59 4 35 0.21 4 0.167 
  75 65 61 4 30 0.20 4 0.150 
  75 59 51 8 20 0.18 4 0.111 0.156 6415 

75 73 62 11 38 0.25 5 0.152 
  75 63 58 5 50 0.25 5 0.200 
  75 59 52 7 30 0.24 5 0.125 
  75 63 60 3 50 0.25 5 0.200 
  75 60 55 5 30 0.26 5 0.115 
  75 59 54 5 35 0.25 5 0.140 
  75 56 51 5 40 0.25 5 0.160 
  75 55 52 3 40 0.25 5 0.160 0.157 6388 

75 76 60 16 20 0.30 6 0.067 
  75 82 68 14 42 0.30 6 0.140 
  75 67 59 8 53 0.30 6 0.177 
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75 56 51 5 45 0.25 6 0.180 
  75 64 58 6 55 0.30 6 0.183 
  75 60 58 2 55 0.32 6 0.172 
  75 55 50 5 40 0.30 6 0.133 
  75 61 55 6 25 0.30 6 0.083 
  75 58 52 6 45 0.30 6 0.150 
  75 65 55 10 35 0.30 6 0.117 
  75 61 54 7 45 0.29 6 0.155 
  75 65 59 6 50 0.30 6 0.167 
  75 62 56 6 35 0.29 6 0.121 
  75 63 55 8 35 0.29 6 0.121 
  75 66 57 9 30 0.28 6 0.107 0.148 6763 

75 65 53 12 40 0.40 7 0.100 
  75 68 58 10 65 0.36 7 0.181 
  75 65 57 8 55 0.35 7 0.157 
  75 66 58 8 40 0.34 7 0.118 
  75 60 53 7 60 0.35 7 0.171 
  75 56 51 5 50 0.34 7 0.147 
  75 59 55 4 60 0.37 7 0.162 
  75 67 58 9 50 0.35 7 0.143 
  75 70 60 10 35 0.35 7 0.100 
  75 55 49 6 37 0.32 7 0.116 0.139 7171 

75 58 52 6 55 0.37 8 0.149 
  75 54 50 4 60 0.37 8 0.162 
  75 52 49 3 55 0.37 8 0.149 
  75 60 53 7 42 0.38 8 0.111 0.142 7018 

75 69 59 10 82 0.49 9 0.167 
  75 62 54 8 68 0.43 9 0.158 
  75 68 56 12 45 0.49 9 0.092 
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75 57 49 8 45 0.44 9 0.102 0.130 7698 

75 57 51 6 65 0.48 10 0.135 
  75 62 52 10 55 0.53 11 0.104 
  75 60 56 4 110 0.62 12 0.177 

  *Note: Highlighted trials are omitted as outliers.  

 

 


