1,449 research outputs found

    Comment on "Scheme of the arrangement for attack on the protocol BB84"

    Get PDF
    In a recent paper (Scheme of the arrangement for attack on the protocol BB84, Optik 127(18):7083-7087, Sept 2016), a protocol was proposed for using weak measurement to attack BB84. This claimed the four basis states typically used could be perfectly discriminated, and so an interceptor could obtain all information carried. We show this attack fails when considered using standard quantum mechanics, as expected - such ``single-shot" quantum state discrimination is impossible, even using weak measurement

    What does it take to solve the measurement problem?

    Get PDF
    We summarise different aspects of the measurement problem in quantum mechanics. We argue that it is a real problem which requires a solution, and identify the properties a theory needs to solve the problem. We show that no current interpretation of quantum mechanics solves the problem, and that, being interpretations rather than extensions of quantum mechanics, they cannot solve it. Finally, we speculate what a solution of the measurement problem might be good for

    The wave function as a true ensemble

    Get PDF
    In quantum mechanics, the wave function predicts probabilities of possible measurement outcomes, but not which individual outcome is realized in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble interpretations which reproduce quantum mechanics violate statistical independence. Theories with this property are commonly referred to as superdeterministic or retrocausal. Finally, we explain how this interpretation helps make sense of some otherwise puzzling phenomena in quantum mechanics, such as the delayed choice experiment, the Elitzur–Vaidman bomb detector and the extended Wigner’s friends scenario

    Counterfactual Ghost Imaging

    Get PDF
    We give a protocol for ghost imaging in a way that is always counterfactual—while imaging an object, no light interacts with that object. This extends the idea of counterfactuality beyond communication, showing how this interesting phenomenon can be leveraged for metrology. Given, in the infinite limit, no photons ever go to the imaged object, it presents a method of imaging even the most light-sensitive of objects without damaging them. Even when not in the infinite limit, it still provides a many-fold improvement in visibility and signal-to-noise ratio over previous protocols, with over an order of magnitude reduction in absorbed intensity

    Contextuality, Coherences, and Quantum Cheshire Cats

    Get PDF

    Could wavefunctions simultaneously represent knowledge and reality?

    Get PDF
    In discussion of the interpretation of quantum mechanics the terms ‘ontic’ and ‘epistemic’ are often used in the sense of pertaining to what exists, and pertaining to cognition or knowledge respectively. The terms are also often associated with the formal definitions given by Harrigan and Spekkens for the wavefunction in quantum mechanics to be �ψ-ontic or �ψ-epistemic in the context of the ontological models framework. The formal definitions are contradictories, so that the wavefunction can be either ψ�-epistemic or ψ �-ontic but not both. However, we argue, nothing about the informal ideas of epistemic and ontic interpretations rules out wavefunctions representing both reality and knowledge. The implications of the Pusey–Barrett–Rudolph theorem and many other issues may be rethought in the light of our analysis

    Backscatter and spontaneous four-wave mixing in micro-ring resonators

    Get PDF
    We model backscatter for electric fields propagating through optical micro-ring resonators, as occurring both in-ring and in-coupler. These provide useful tools for modelling transmission and in-ring fields in these optical devices. We then discuss spontaneous four-wave mixing and use the models to obtain heralding efficiencies and rates. We observe a trade-off between these, which becomes more extreme as the rings become more strongly backscattered

    Weak values and the past of a quantum particle

    Get PDF
    We investigate four key issues with using a nonzero weak value of the spatial projection operator to infer the past path of an individual quantum particle. First, we note that weak measurements disturb a system, so any approach relying on such a perturbation to determine the location of a quantum particle describes the state of a disturbed system, not that of a hypothetical undisturbed system. Second, even assuming no disturbance, there is no reason to associate the nonzero weak value of an operator containing the spatial projection operator with the classical idea of “particle presence.” Third, weak values are only measurable over ensembles, and so to infer properties of individual particles from values of them is problematic. Finally, weak value approaches to the path of a particle do not provide information beyond standard quantum mechanics (and the classical modes supporting the experiment). We know of no experiment with testable consequences that demonstrates a connection between particle presence and weak values

    How Quantum is Quantum Counterfactual Communication?

    Get PDF
    Quantum Counterfactual Communication is the recently-proposed idea of using quantum physics to send messages between two parties, without any matter/energy transfer associated with the bits sent. While this has excited massive interest, both for potential ‘unhackable’ communication, and insight into the foundations of quantum mechanics, it has been asked whether this process is essentially quantum, or could be performed classically. We examine counterfactual communication, both classical and quantum, and show that the protocols proposed so far for sending signals that don’t involve matter/energy transfer associated with the bits sent must be quantum, insofar as they require wave-particle duality
    corecore