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Abstract
We model backscatter for electric fields propagating through optical micro-ring resonators, as
occurring both in-ring and in-coupler. These provide useful tools for modelling transmission and
in-ring fields in these optical devices. We then discuss spontaneous four-wave mixing and use the
models to obtain heralding efficiencies and rates. We observe a trade-off between these, which
becomes more extreme as the rings become more strongly backscattered.

1. Introduction

We need sources of controlled numbers of discrete photons to create photonic circuits for quantum
computing. Two established ways we can generate photons are using near-deterministic single-photon
emitters (e.g. colour centres [1] and quantum dots [2]) and spontaneous generation using parametric
nonlinearities (e.g. four-wave mixing in optical fibre [3] and silicon photonics [4]). Although parametric
generation of photon pairs is probabilistic, we can mitigate this by using one half of a photon pair to herald
its partner’s presence [5]. Four-wave mixing occurs in a variety of devices, but is most conveniently produced
in integrated circuits by micro-ring resonators (MRRs). These allow higher generation rates, due to resonant
field enhancement [6–11].

Typically, their transmission displays Lorentzian-shaped resonant peaks, reaching a minimum when the
ring circumference is an integer multiple of the wavelength [12]. However, these devices are vulnerable to
backscatter [13].

This occurs when light couples between the forward and backward modes within the ring, either due to
reflections in the coupling between bus and ring, or from the surface roughness of the waveguide. This causes
a splitting of the resonance peak, reducing resonant enhancement and changing the shape of the spectral
response. Furthermore, one member of a generated two-photon pair could be backscattered and lost,
reducing the heralding efficiency of the photon-pair source [14].

However, maintaining high heralding efficiency is essential to overcoming the randomness inherent to
parametric photon-pair generation. We therefore investigate how this loss mechanism will limit performance
in ring-resonator sources.

While some, such as Li et al, have considered the effects of backscatter [15], there is not yet a full analytic
model for its effects on field propagation through a ring. Here we construct this unified analytic model for
backscatter in both the ring and the coupler, and we apply it to spontaneous four-wave mixing in an MRR.
This allows us to analyse the trade-offs between heralding rate and heralding efficiency.

While previous studies have looked at how the heralding efficiency is limited by design parameters [14]
and material properties such as cross two-photon absorption in silicon [16, 17], this is the first study that
investigate the role of backscatter on this, which can result from fabrication imperfections or non-optimal
design. Therefore, this research will be useful to anyone designing MRRs for generation of photon pairs.
Figure 1 presents a typical experimental transmission spectrum from a MRR showing the characteristic
asymmetric split peaks, which any analytic model of backscatter must be able to explain in order to fully
model the effect.
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Figure 1. Transmission power obtained experimentally from an micro-ring resonator, showing normalised output power (y-axis)
plotted against pump wavelength (x-axis, in nm), for a 5 µm ring. It shows the a fundamental resonance dip split by backscatter
effects.

Figure 2. Our matrix model of an MRR, with three two-mode vectors (R, B and L), each with a forward and a backward
component (→ and←), all linked by the 6× 6 unitary matrix U. As all interaction occurs in this matrix, R1 = R2.

2. Modelling backscatter

2.1. Matrix formalism
We model the system as a scattering matrix over six modes, representing the forward and backward fields in
the ring, bus and loss channel, as per figure 2.

R2→
R2←
B2→
B2←
L2→
L2←

= U



R1→
R1←
B1→
B1←
L1→
L1←

 , (1)

where R, B and L correspond to ring, bus and loss modes,→ and← to forward- and backward-travelling
fields, and 1 and 2 to entering and leaving the scattering matrix. By modelling loss via coupling to a fictional
mode, we conserve unitarity, and so the commutation relations, making the model suitable for later adaption
for quantum analysis.

Note we model L1→ = L1← = 0 (as noise input from the vacuum will be far lower than the powers we are
considering); and, for consistency (as we model all interaction as taking place within U)
R1→ = R2→, R1← = R2←.

Our interaction can be thought of as consisting of a number of compiled smaller interactions between
two modes. Therefore, the 6× 6 matrices representing each process CplBR, LossRL, BackR and BackC
(bus-ring coupling, ring-loss coupling, and backscatter, modelled in-ring and in-coupler respectively) are:

CplBR = TB→R→ +TB←R← +1L (2)
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LossRL = AR→L→ +AR←L← +1B (3)

BackR = C
R
R→R← +1L,B (4)

BackC = CC
R→R← +CC

B→B← +CC
L→L← , (5)

where 1 is the identity matrix on a given mode (meaning the process matrix does not alter that mode), and
sub-matrices (on two modes, here a and b), are:

Aab =

[
e−iθ(λ)α eiθ(λ)

√
1−α2

−e−iθ(λ)
√
1−α2 eiθ(λ)α

]
ab

(6)

CR
ab =

[
|ξ| eiζ

√
1− |ξ|2

−e−iζ
√
1− |ξ|2 |ξ|

]
ab

(7)

CC
ab =

[
e−iζ/2|ξ| eiζ/2

√
1− |ξ|2

−e−iζ/2
√
1− |ξ|2 eiζ/2|ξ|

]
ab

(8)

Tab =

[
e−2iϕ|t|

√
1− |t|2

−e−2iϕ
√
1− |t|2 |t|

]
ab

, (9)

where α is the loss coefficient (one with no loss in the ring, nil with complete loss), ξ the backscatter
coefficient (one when no backscatter, zero when entirely backscattered), and t the coupling coefficient (one
with no ring-bus coupling, zero with total coupling), and ζ and ϕ the respective phases on backscatter and
ring-bus coupling.

Note backscatter modelled in-ring and in-coupler (in CR
ab and C

C
ab) differ by backscatter in-ring having all

phase occurring on the backward component, and backscatter in-coupler having opposite phase for the
forward and backward components. Both have the same phase difference, ζ , between forward and backward
components.

θ is the phase the field accrues over one trip around the ring,

θ(λ) =
4π2ner

λ
+ τ, (10)

where ne is the effective refractive index, r is the ring radius, τ is any phase offset caused by the loss α, and λ
is the field wavelength.

For instance, BackR is: 

|ξ| eiζ
√
1− |ξ|2 0 0 0 0

−e−iζ
√
1− |ξ|2 |ξ| 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (11)

From this, the two unitary matrices, representing the entire interaction (for in-ring and in-coupler
backscatter respectively), are:

UR = CplBR ·BackR · LossRL (12)

UC = CplBR ·BackC · LossRL. (13)

Note, the above ordering does not matter, as these process matrices commute (up to arbitrary powers
of−1).
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2.2. Transmission
Now we can obtain the transmission, to compare with observations (e.g. figure 1) by (where row-column
subscript notation picks out 2× 2 sub-matrices):[

B2→
B2←

]
= UBR

[
R1→
R1←

]
+UBB

[
B1→
B1←

]
=

(
UBRURB

12−URR
+UBB

)[
B1→
B1←

]
.

(14)

This gives the transmission, B2→, for in-ring backscatter and in-coupler backscatter,

BR
2→ =

1

t
− (t−1 +α|ξ|e−iθ)(|t|2− 1)

1+ 2tαe−iθ|ξ|+(tαe−iθ)2
(15)

BC
2→ =

ξ

t
− (ξ− tαe−iθ)(|t| − |t|−1)

(tαe−iθ)2− tαe−iθ(ξ+ ξ∗)+ 1
, (16)

when B1→ is normalised to 1, and B1← is zero.
(Note, Biasi et al also give an analytical model for backscattering (albeit in microdisk resonators)

[18]—however, their model is based on the time-differential of the field, whereas our model is
time-independent, based on a scattering matrix. As future work, we would be interested in seeing their
model applied to the four-wave mixing analysis presented in section 4.)

2.3. Field in-ring
Due to how the scattering matrices were composed, the ring field values they give, R, are those after a full
ring round-trip. However, we need the average power in the ring to work out the photon pairs generated by
spontaneous four-wave mixing—and so the field halfway through the ring. Therefore, we need to reorder the
full interaction matrices, giving:

UR = Loss
1
2
RL ·Back

1
2
R ·CplBR ·Back

1
2
R · Loss

1
2
RL (17)

UC = Loss
1
2
RL ·CplBR ·BackC · Loss

1
2
RL. (18)

These give the same transmission as before, but now also the average in-ring fields. Focusing on the
sub-matrices, considering the previous method, the relations required are:[

R→
R←

]
=

URB

12−URR

[
B1→
B1←

]
. (19)

For both in-ring and in-coupler backscatter, this gives equations for the forward and backward fields.
Unfortunately, these expressions are far more complicated than that for transmission—their derivation, and
graphs of produced responses, are far more informative than their actual formulae.

From this, we get forward and backward pump power in-ring as:

[
Pp→
Pp←

]
=

(
URB

12−URR

[
B1→
B1←

])2

. (20)

2.4. Comparison of in-ring and in-coupler scattering
Figure 3 shows the above models are the same when the backscatter phase is nil. However, when a phase is
applied, the in-coupler model peaks show asymmetry, while the in-ring model shows none.

The in-ring model’s lack of asymmetric split peaks is un-physical, given we see asymmetric peak in
transmission spectra of MRRs (e.g. [15], and figure 1). This symmetry could be as we do not allow the
backscatter coefficient, ξ, to have a phase for the in-ring model, given, unlike for in-coupler, it makes no
sense for backscatter to apply a phase to the forward-coupled component when scattering occurs in-ring.

To replicate experimental data, it makes sense to combine the models, to have backscatter within both
ring and coupler. This makes sense, as backscatter has been associated with different things in each case: for
in-ring, waveguide-roughness; and for in-coupler, mode-mismatch between the straight and curved coupling
regions, and increased roughness-induced backscatter due to higher field intensity in the coupling region.
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Figure 3. Absolute values of both forward (left column) and backward (middle) ring fields, and transmission (right), for both
in-ring (blue) and in-coupler (red) models. The x-axis is wavelength in µm, and the y-axis is field magnitude normalised against
input field, with ring-bus coupling coefficient t and loss coefficient α of magnitude 0.98 and ring-bus coupling phase ϕ of 0,
backscatter coefficient ξ of magnitude 0.99 and phase ζ of 0 (top row) and π/10 (bottom), for ring radius r of 15 µm.

However, both models give the same amount of splitting for a given backscatter coefficient, and are
equivalent when phase is nil. This means it makes sense to just use the backscatter in-coupler model, and
proportionally reduce the phase on the backscatter coefficient. This removes unnecessary degrees of freedom,
and allows us to more easily equate coupling constants with observables.

3. Issues with the backscatter models

3.1. Issues with point-coupling model
An issue with the models is that they all treat coupling as occurring at a fixed point, rather than continuously.
This was been raised as an issue in Li et al [15]. However, this poses less of an issue than initially expected.

This is as, when backscatter is modelled in-ring, coupling at one point is equivalent to applying the Nth
root of the coupling N times distributed around the ring. We see this when, for determining the in-ring field
in the in-ring matrix model, the square root of the backscatter matrix is applied twice—once before and once
after the field value is taken. At its limit, this single point-backscatter model is equivalent to applying the
differentiated backscatter matrix at every point along the circumference—all this requires is the backscatter
being phase-coherent. This seems rational, and necessary for any adequate modelling of the system, so we
accept it, allowing us to treat in-ring point coupling as equivalent to uniform coupling at all points.

This can also be applied to the ring-bus coupling, across the coupling length (weighted by ring-bus
distance). Again, this shows single-point coupling is a simpler, but just as apt, model as continuous coupling.
However, it relies on the assumption that group velocity is the same in both ring and bus, which is not
necessarily so.

3.2. Assumption of equal group velocity
Both models are in the frequency domain, without time-dependence, so the wave velocity does not have to
be factored in. However, to calculate spontaneous four-wave mixing, the field derivative with respect to time
has to be taken, which means moving from the frequency to time domain [19, 20]. In that, the photon would
be treated as a fixed-width Gaussian wave-packet travelling through the waveguide.

While this works when bus and ring waveguides have equal group velocities, it does not when they differ.
Then, the wave-packet travels at different rates on either side of the coupler, meaning the non-dispersive
assumption, that the rate of change of the wave-packet width remains constant, cannot be upheld. This is
compounded by the fact that the group index, and so the speed of light in the medium, itself varies with the
field intensity, making the situation even harder to model.

However, based on our situation, this can be neglected, as the wavelengths typical for integrated
photonics (∼1.55 µm) are at the zero-dispersion point for our typical waveguide structure (silicon-on-silica)
[21]. Therefore, as dispersion will be nil regardless of the group velocity here, the effect can be neglected, and
the model applied to this situation.
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4. Heralding efficiency

4.1. Paired photon generation rate
We now want to take this model for backscatter in ring resonators, and obtain the heralding rate and
efficiency. To do this, we first need the photon-pair generation rate.

Wang et al’s work on spontaneous four-wave mixing [22], adapted to an MRR (setting the length L to one
round-trip around the ring, 2πr), gives the average photon-pair generation rate as:

J4WM = ⟨vac|n̂s(K,2πnr/c)|vac⟩=
∣∣∣∣β [Pp→Pp←

]∣∣∣∣2

=

∣∣∣∣∣∣3π
2ϵ0cχ(3)r

2n2pλAeff

(
URB

12−URR

[
B1→
B1←

])2
∣∣∣∣∣∣
2

,

(21)

where

β =
3π2ϵ0cχ(3)r

2n2pλAeff
, (22)

np is the effective index for the pump wavelength, Aeff is the cross-sectional area of the waveguide, and χ(3) is
the third-order nonlinear response of silicon. In the backscatter-free limit, this is identical to the result
Vernon et al obtain [14]. As shown by Wang et al [22], these photons are always generated in pairs, so we do
not need to consider its effects on efficiency.

4.2. Ring effects on generated photons
We now want the proportion of photons emitted from the device, out of those created into a given mode. As
photon number proportions behave similarly to light field intensity, we can, similarly to when deriving the
field strength in the ring, set: 

√
PrR→√
PrR←√
PrB→√
PrB←√
PrL→√
PrL←

= U



√
PrR→+ 1√
PrR←+ q2

0
0
0
0

 , (23)

here, R, B and L correspond to ring, bus and loss modes,→ and← to forward- and backward-travelling
fields, and the unitary U is determined for the in-ring and in-coupler models by equation (18). Factor q is the
ratio of the power backwards (from the backward-travelling pump field) to that forwards,

q=
|Pp←|
|Pp→|

. (24)

For this model, we assume the various coupling and scattering parameters remain the same for all
modes—that they do not vary with frequency. This is valid for our narrow-band assumption (that signal and
idler are both within aO(1%) band around the pump frequency), and means the parameters in U are
identical to those earlier, with the exception of CC

ab, which changes to:

CC
ab =

[
e−iζ/2|ξ| 0

−e−iζ/2
√
1− |ξ|2 1

][
a
b

]
, (25)

as photons coming from the backward into the forward mode will not be part of a coherent pair.
By rearranging, we get: [

PrB→
PrB←

]
=

(
UBR

[ √
PrR→+ 1√
PrR←+ q2

])2

=

(
UBR

√
U2

RR

12−U2
RR

+12

)2 [
1
q2

]
=

U2
BR

12−U2
RR

[
1
q2

]
.

(26)
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Figure 4. The maximal reduced pair generation rate J4WM/β2, heralding mode rate JHM/β2, and heralding rate JHerald/β2. The
backscatter coefficient ξ has magnitude 0.99 and phase ζ of 0 (red), magnitude 0.99 and phase π/20 (blue), and magnitude 1 (no
backscatter, green). The x-axis is the ring-bus coupling coefficient t, and the y-axis is the logarithm in base-10 of the rate, with loss
coefficient α of 0.98, for normalised input field B1→.

Figure 5. The heralding rate JHerald/β2, given for backscatter coefficient ξ of magnitude 0.99 and phase ζ of 0 (red), magnitude
0.99 and phase π/20 (blue), and magnitude 1 (no backscatter, green). The x-axis is the pump wavelength in µm, and the y-axis is
the logarithm (base-10) of the rate, with ring-bus coupling coefficient t and loss coefficient α of magnitude 0.98 and ring-bus
coupling phase ϕ of 0, for for normalised input field B1→.

This gives the proportion of photons emitted, in a given mode, to those created. This is maximised when
on resonance, which occurs when θ is an integer multiple of π, minus the phases on any elements (e.g. minus
ζ/2 if asymmetrically split). Assuming the wavelengths for signal and idler obey both this resonance
matching, and the four-wave mixing conditions from pump frequency, we can assume that this maximum is
constant (as Vernon et al do), if we neglect effects of spectral correlation [14].

4.3. Heralding rate
By taking the maximal output proportion, PrB→, and squaring it, we get the proportion of signal-idler pairs
where both photons are emitted. Multiplying this by the average photon-pair number generated, J4WM , gives
the average photon-pair rate—the heralding rate, JHerald:

JHerald = J4WMPr
2
B→, (27)

as shown in figures 4 and 5. This shows, even at its peak, a relatively minor amount of backscatter reduces the
heralding rate to nearly a tenth of its backscatter-free value. Alongside this, we define the rate of photons
being in the Heralding Mode, JHM , by:

JHM = J4WMPrB→, (28)

for which the maximal rate is again shown in figure 4, again showing a large drop (here a reduction to
one-third of the original value) just to backscatter.

4.4. Heralding efficiency
From Vernon et al, we define the heralding efficiency, η, as the ratio between there being a heralded output
photon, and a heralding photon being emitted:

η =
JHerald
JHM

= PrB→. (29)

The maximal output proportion and efficiency are the same. This efficiency, and so the maximal output
proportion, is shown for different ring-bus coupling rates in figure 6. This shows that this efficiency drops
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Figure 6. The heralding efficiency η, given for backscatter coefficient ξ of magnitude 0.98 (blue), 0.99 (red), and 1 (no
backscatter, green). The x-axis is the ring-bus coupling coefficient t, and the y-axis is the normalised proportion, with loss
coefficient α of 0.98. At critical coupling (t=α= 0.98), efficiency is below 0.6 without backscatter, and below 0.3 with
backscatter of coefficient 0.98, showing the effect of backscatter on heralding efficiency.

heavily as the coupling between ring and bus is reduced to nil (as t goes to unity), with it going below 0.4 as
we reach critical coupling (when in-ring loss and bus-ring coupling are equal, and so typical resonant peaks
for bus transmission are deepest). This shows, despite critical coupling being when the most power goes into
the ring when on-resonance, it most probably is not the optimal coupling for paired photon generation. To
investigate this further, we need to obtain a relationship directly between heralding rate and efficiency.

4.5. Relationship between rate and efficiency
We want to define the relationship between heralding rate, JHerald, and heralding efficiency, η. From the
relationship between maximal output proportion and efficiency above,

JHerald = J4WM→ · η2

=
(3π2ϵ0cχ(3)r

2n2pλAeff

)2
|PrB→Pp→|2.

(30)

As the sub-matrices commute with one another,[
PrB→
PrB←

][
Pp→
Pp←

]
=

(( U2
BR

12−U2
RR

)( URB

12−URR

)[B1→
B1←

])2

=
η2(1− η)

M

[
B2
1→

B2
1←

]
,

(31)

where

M=
U2

BR

(
12−U2

RR−U2
BR

)
(
12−U2

RR

)2(
12 +URR

)2 . (32)

Therefore, we can still write the heralding rate as:

JHerald = β2 η
4(1− η)2

M2
B4
1→. (33)

This is the relationship shown by Vernon et al [14]. However, as opposed to their conclusion, figure 7
shows that thisM does not remain constant across all possible ring-bus coupling strengths.

This leads us to ask if we could write the heralding rate JHerald as some function of the heralding efficiency
η, multiplied by some constant of the ring-bus coupling t.

Attempting this numerically, in figure 8 we get a plot of reduced heralding rate JHerald/β2 (y-axis) against
heralding efficiency (x-axis). While similar to that in [14], it shows the differences both between our model
and theirs, and cases with and without backscatter. However, it does still support their conclusion—that
there is a trade-off between heralding efficiency η and heralding rate JHerald, while also further suggesting this
trade-off becomes more pronounced the greater the splitting

√
1− ξ2 becomes. It also shows that, given the

8
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Figure 7. The value of Vernon et al’s parameterM, as taken from equation (32), given for backscatter coefficient ξ of magnitude
0.98 (blue), 0.99 (red), and 1 (no backscatter, green). The x-axis is the ring-bus coupling coefficient t, and the y-axis is the
normalised proportion, with loss coefficient α of 0.98, for ring radius r of 15 µm. Note, unlike in Vernon et al’s paper, here, this is
not a constant with respect to t.

Figure 8. The logarithm (base-10) of the reduced heralding rate JHerald/β2 (y-axis), plotted against the heralding efficiency η
(y-axis), with loss coefficient α of 0.98. This is given for backscatter coefficient ξ of magnitude 0.98 (blue), 0.985 (orange), 0.99
(green), 0.995 (red) and 1 (no backscatter, purple), and phase ζ of 0.

position of this optimal heralding rate with respect to efficiency, that critical coupling is not optimal for
either—for both, increasing bus-ring coupling above loss (reducing t to below α) is beneficial.

5. Conclusion

We presented two models for backscatter in MRRs—occurring in-ring, and in-coupler. We showed only the
in-coupler model allows us to have asymmetrically split peaks, suggesting this in-coupler coupling must be
the cause of that seen experimentally (as opposed to that caused in-ring—e.g. by wall surface roughness).

While this modelling was to allow analytic analysis of backscatter effects on four-wave mixing in these
structures, they can be applied wherever MRRs are used (e.g. frequency combs, wavelength-filtering, and
modulation of non-linear optical effects) [23, 24]. Also, this analysis could be abstracted to model
backscatter in any resonant cavity—which, despite being one of the key sources of difficulty in controlling
their use, has not been heavily investigated.

Alongside this, we suggested a spectrum could act as though entirely un-split given a large enough phase,
due to the split peak asymmetry this gives. This could potentially mitigate the negative effects of backscatter.

Further, we calculated the effects of backscatter on spontaneous four-wave mixing rates, heralding rates
and efficiencies. A future direction would be to link these parameters to ring design, so these values could be
optimised for given material parameters, to mitigate the effects of backscatter. Given how essential such
sources will be for any form of optical quantum computing or quantum communication, this research will
revolutionise the efficiency of these processes.
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