31 research outputs found

    Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities

    Get PDF
    PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities

    The PHR proteins: intracellular signaling hubs in neuronal development and axon degeneration

    Get PDF

    Expanded DMPK repeats in dizygotic twins referred for diagnosis of autism versus absence of expanded DMPK repeats at screening of 330 children with autism

    No full text
    Zuzana Musova,1 Miroslava Hancarova,1 Marketa Havlovicova,1 Radka Pourova,1 Michal Hrdlicka,2 Josef Kraus,3 Marie Trkova,4 David Stejskal,4 Zdenek Sedlacek1 1Department of Biology and Medical Genetics, 2Department of Child Psychiatry, 3Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol, 4Gennet, Centre for Fetal Medicine, Prague, Czech Republic Abstract: Myotonic dystrophy type 1 (DM1) belongs to the broad spectrum of genetic disorders associated with autism spectrum disorders (ASD). ASD were reported predominantly in congenital and early childhood forms of DM1. We describe dizygotic twin boys with ASD who were referred for routine laboratory genetic testing and in whom karyotyping, FMR1 gene testing, and single nucleotide polymorphism array analysis yielded negative results. The father of the boys was later diagnosed with suspected DM1, and testing revealed characteristic DMPK gene expansions in his genome as well as in the genomes of both twins and their elder brother, who also suffered from ASD. In accord with previous reports on childhood forms of DM1, our patients showed prominent neuropsychiatric phenotypes characterized especially by hypotonia, developmental and language delay, emotional and affective lability, lowered adaptability, and social withdrawal. The experience with this family and multiple literature reports of ASD in DM1 on the one side but the lack of literature data on the frequency of DMPK gene expansions in ASD patients on the other side prompted us to screen the DMPK gene in a sample of 330 patients with ASD who were first seen by a geneticist before they were 10 years of age, before the muscular weakness, which may signal DM1, usually becomes obvious. The absence of any DMPK gene expansions in this cohort indicates that targeted DMPK gene testing can be recommended only in ASD patients with specific symptoms or family history suggestive of DM1. Keywords: autism, myotonic dystrophy type 1, DMPK gene, genetic testing, comorbidit

    HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain.

    Get PDF
    Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain developmentLachlan A. Jolly, Lam Son Nguyen, Deepti Domingo, Ying Sun, Simon Barry, Miroslava Hancarova, Pavlina Plevova, Marketa Vlckova, Marketa Havlovicova, Vera M. Kalscheuer, Claudio Graziano, Tommaso Pippucci, Elena Bonora, Zdenek Sedlacek, and Jozef Gec
    corecore