45 research outputs found

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Modelling, Test and Practice of Steel Structures

    No full text
    Steel structures have been widely used in civil engineering in recent decades across applications such as large spatial structures, high-rise buildings, and bridges [...

    PREFACE

    No full text

    Design of Aluminum Alloy H-Sections under Minor-Axis Bending

    No full text
    Much research has been reported on the global response of aluminum alloy H-sections members, while studies on the local buckling behavior of H-sections under pure bending remain relatively limited. The purpose of the research is to investigate the response of aluminum alloy H-sections subjected to minor axis bending. Using a finite element model, this study analyzed the stress distribution and failure mechanism of aluminum alloy H-sections under minor-axis bending and obtained the ultimate capacities of cross-sections covering a wide range of plate slenderness. The results were compared with the strength predictions based on EN1999-1-1 and the effective width method in AS/NZS 4600. The flange slenderness was found to play the most significant role in determining the normalized capacity. The sections are shown to exhibit an elastic-plastic stress distribution in the tensile flanges. The comparisons given in this study indicate that EN1999-1-1 underestimates the predicted bending strengths. The predictions based on the effective width method are shown to be more accurate than EN1999-1-1. An alternative design method is proposed for treating aluminum H-sections in minor axis bending. This method considers plastic stress distributions in the tensile flanges after the compressed flanges have locally buckled

    Ductile Fracture Investigation of High-Strength Steel SM570 under Low Stress Triaxiality

    No full text
    A comprehensive understanding of the fracture behavior of high-strength steel is of great significance for its structural application. In this study, experiments were conducted to investigate the ductile fracture mechanism of high-strength steel SM570, one type of conventional structural steel. Two types of shear specimens, one with symmetrical notches and the other with asymmetrical notches, were designed, and by changing the notch angles, a wide range of low-stress triaxiality could be obtained. Based on the discussion of the experimental results, crack initiation, and its propagation up to fracture failure were clarified. Compared with the fracture behavior of SM490 (one type of conventional normal-strength structural steel), the SM570 with higher yield stress has relatively severe stress concentration, the crack initiation appears earlier, and the brittle fracture is more likely to occur. Numerical simulations based on the finite element method (FEM) were performed with ABAQUS to obtain the stress triaxialities and equivalent plastic strain of the symmetrical and asymmetrical specimens. A modified N-VG model with a fracture criterion at a negative and low-stress triaxiality range from −0.6 to 1/3 was proposed for evaluating the fracture behavior of steel SM570

    Development and seismic behavior of precast concrete beam-to-column connections

    No full text
    A new precast concrete beam-to-column connection for moment-resisting frames was developed in this study. Both longitudinal bar anchoring and lap splicing were used to achieve beam reinforcement continuity. Three full-scale beam-to-column connections, including a reference monolithic specimen, were investigated under reversal cyclic loading. The difference between the two precast specimens was the consideration of additional lap-splicing bars in the calculation of moment-resisting strength. Seismic performance was evaluated based on hysteretic behavior, strength, ductility, stiffness, and energy dissipation. The plastic hinge length of the specimens is also discussed. The results show that the proposed precast system performs satisfactorily under reversal cyclic loading compared with the monolithic specimen, and the additional lap-splicing bars can be included in the strength calculation using the plane cross-section assumption. Furthermore, the plastic hinge length of the proposed precast beam-to-column connection can be estimated using the models for monolithic specimens
    corecore