11 research outputs found
Towards Single-Molecule Nanomechanical Mass Spectrometry
We present an initial attempt to perform mass spectrometry (MS) of single proteins and gold nanoparticles with nanoelectromechanical systems (NEMS). Mass spectrometry, the identification of molecules based on their masses, is one of the most important techniques in proteomics research currently. NEMS devices, with their exquisite sensitivities, low costs, and abilities to detect neutral molecules, offers a promising paradigm for performing mass spectrometry.
In our first-generation experiments, protein molecules, and gold nanoparticles were ionized by electrospray ionization (ESI) and transported to a NEMS chip, through a differential vacuum system, by hexapolar ion guides. NEMS was transduced by magnetomotive technique and the fundamental mode of the flexural resonance was monitored. Species landing on the NEMS are weighted through the change in the frequency of the resonator. Two protein species (66 kDa and 200 kDa) and 5 nm gold nanoparticles were analyzed with this technique, with mass resolution level of 15 kDa.
A method to remove the position dependency of the frequency shift was developed employing two different modes of a nanomechanical beam. The uncertainties of mass and position values are calculated as a function of the frequency noise of the first and second modes of the beam.
In our second-generation experiments, the first and second flexural modes of a doubly-clamped beam were tracked in real time. Nanoparticles and biospecies are again produced through ESI and transported through ion optics. The adsorption of 10 nm GNPs and IgM protein (950 kDa) were observed. Mass values for these events are obtained with the multimode analysis technique and shown to be consistent with the expected values.</p
Graphene Field Effect Devices Operating in Differential Configuration
After decades of miniaturization and performance tuning, Silicon electronics is approaching its technological limits. In the search for alternative transistor channel materials, Graphene has been given much attention since its discovery in 2004, mainly because it offers compelling values of carrier mobility and a consequent potential for high frequency operation, possibly reaching into the THz range. Certain drawbacks however, such as the weak or absent current saturation or the high “off’ current, limit the use of Graphene for traditional CMOS-like circuitry. Here we investigate the possibility of employing an alternative approach based on differential signaling, where saturation and off-current are not expected to preponderate
Neutral particle Mass Spectrometry with Nanomechanical Systems
Current approaches to Mass Spectrometry (MS) require ionization of the
analytes of interest. For high-mass species, the resulting charge state
distribution can be complex and difficult to interpret correctly. In this
article, using a setup comprising both conventional time-of-flight MS (TOF-MS)
and Nano-Electro-Mechanical-Systems-based MS (NEMS-MS) in situ, we show
directly that NEMS-MS analysis is insensitive to charge state: the spectrum
consists of a single peak whatever the species charge state, making it
significantly clearer than existing MS analysis. In subsequent tests, all
charged particles are electrostatically removed from the beam, and unlike
TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to
measure mass spectra for neutral particles. Thus, it is possible to envisage
MS-based studies of analytes that are incompatible with current ionization
techniques and the way is now open for the development of cutting edge system
architectures with unique analytical capability
Atmospheric Pressure Mass Spectrometry of Single Viruses and Nanoparticles by Nanoelectromechanical Systems
Mass spectrometry of intact nanoparticles and viruses can serve as a potent
characterization tool for material science and biophysics. Inaccessible by
widespread commercial techniques, the mass of single nanoparticles and viruses
(>10MDa) can be readily measured by NEMS (Nanoelectromechanical Systems) based
Mass Spectrometry, where charged and isolated analyte particles are generated
by Electrospray Ionization (ESI) in air and transported onto the NEMS resonator
for capture and detection. However, the applicability of NEMS as a practical
solution is hindered by their miniscule surface area, which results in poor
limit-of-detection and low capture efficiency values. Another hindrance is the
necessity to house the NEMS inside complex vacuum systems, which is required in
part to focus analytes towards the miniscule detection surface of the NEMS.
Here, we overcome both limitations by integrating an ion lens onto the NEMS
chip. The ion lens is composed of a polymer layer, which charges up by
receiving part of the ions incoming from the ESI tip and consequently starts to
focus the analytes towards an open window aligned with the active area of the
NEMS electrostatically. With this integrated system, we have detected the mass
of gold and polystyrene nanoparticles under ambient conditions and with two
orders-of-magnitude improvement in capture efficiency compared to the
state-of-the-art. We then applied this technology to obtain the mass spectrum
of SARS-CoV-2 and BoHV-1 virions. With the increase in analytical throughput,
the simplicity of the overall setup and the operation capability under ambient
conditions, the technique demonstrates that NEMS Mass Spectrometry can be
deployed for mass detection of engineered nanoparticles and biological samples
efficiently.Comment: 38 pages, 6 figure
Microwave resonators enhanced with 3D liquid-metal electrodes for microparticle sensing in microfluidic applications
In electrical sensing applications, achieving a uniform electric field at the sensing region is required to eliminate the compounding effect of particle location on the signal magnitude. To generate a uniform electric field in a microfluidic platform, 3D electrodes based on conductive electrolyte liquids have been developed before, where the ionic conductivity of the electrolyte was sufficient for impedance measurements at low frequencies (typically lower than 50 MHz). However, electrolyte liquids cannot be used as electrodes at microwave frequencies (>1 GHz) due to the low mobility of ions. Here, we used Galinstan, a room-temperature liquid metal, to microfabricate 3D liquid electrodes connected to a microwave resonator — and all integrated within a microfluidic system. By generating a highly uniform electric field, a mixture of 20 μm and 30 μm diameter polystyrene particles were measured and analyzed without any calibration for particle position. The results demonstrate the utility of liquid electrodes in enhancing the electrical characteristics of microwave resonant sensors
Position-independent microparticle sensing: microwave sensors integrated with metalized, 3D microelectrodes
Microfluidics integrated microwave sensors can be used for high throughput and label-free sensing with single particle resolution. For microwave sensors with coplanar electrodes, electric field is nonuniform over the height of microfluidic channel, causing position dependent sensitivity. One way to resolve positional dependency is to place electrodes on the sidewalls of microfluidic channel to obtain uniform electric field. Here, we demonstrate a novel, metal coated 3D SU8 microelectrode integrated with microwave resonator to obtain uniform electric field inside microfluidic channel and mitigate position dependent sensitivity. SU8 electrodes are positioned at the sensing region of the resonator, in contact with the microfluidic channel walls. During microparticle sensing experiments, phase and amplitude of the resonator are tracked using custom built single side band detection circuitry to detect particle induced shifts in these signals. Results of particle sensing, and size classification experiments indicate that with 3D SU8 electrode integrated microwave resonators, position-independent sensitivity can be achieved
Vapor sensing of colorectal cancer biomarkers in isolation by bare and functionalized nanoelectromechanical sensors
Small dimensions and high resonance frequencies render Nanoelectromechanical systems (NEMS) sensitive mass detectors. Mass detection capability can be used to sense chemicals in the gas phase by functionalizing the device, usually with a polymeric film. The performance of NEMS-based gas detectors in breath analysis applications depends crucially on the selectivity between selected functionalization layers and targeted biomarkers. Here, we report the detection of four colorectal cancer biomarkers at parts-per-million concentration levels, when introduced in isolation to the sensor system within a dry nitrogen stream. The biomarkers, 3-methylpentane, cyclohexane, nonanal, and decanal, were then discriminated from each other by using the combined response of three NEMS devices: one bare device, and two devices coated with either poly(ethyleneoxide) or poly(caprolactone). Our results indicate that bare NEMS are more responsive to high molar mass biomarkers, whereas functionalized sensors are more responsive toward more volatile biomarkers. Considering the inherently fast response times and minuscule limits of detection of NEMS devices, the combined response of differentially coated sensors can be used as the main sensing element to identify and distinguish cancer biomarkers in human breath
ARTICLE Neutral particle mass spectrometry with nanomechanical systems
Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the species' charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all the charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting-edge system architectures with unique analytical capability
Efficient sensing of single viruses and nanoparticles by nanomechanical sensors integrated with ion lenses
Nanoelectromechanical Systems (NEMS) resonators can be used to detect, weigh and identify single nanoparticles and viruses. Given their small footprint, however, NEMS are plagued by low analyte detection rate since the active sensing cross-sections to capture analyte particles is very small. Here we report on the development of an on-chip focusing lens operating in air and integrated with the NEMS sensor. The integrated system increases the capture efficiency by orders of magnitude, and allows for operation under ambient conditions to measure the mass of nanoparticles and virions. With this system, mass spectrum of nanoparticle samples and mammalian viruses at biologically relevant concentrations can be characterized within less than 30 minutes