137 research outputs found
Structural Transformation in Ge\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eS\u3csub\u3e100−x\u3c/sub\u3e (10 ≤\u3cem\u3e x \u3c/em\u3e≤ 40) Network Glasses: Structural Varieties in Short-Range, Medium-Range, and Nanoscopic Scale
Precise x-ray diffraction measurements using high-energy x rays of synchrotron radiation and systematic Raman scattering measurements were carried out for GexS100−x (10 ⩽ x ⩽ 40) network glasses. The structural models of the network glasses were proposed based on the results. In the stoichiometric composition Ge33S67, GeS4 tetrahedral units are connected forming either corner-sharing or edge-sharing structures. In the S-rich glasses, S atoms are inserted between two neighboring GeS4 tetrahedra, resulting in a flexible floppy network. In a much more S-rich region, some S8 ring molecules are isolated from the network, and assemble to form a crystal in nanoscopic scale. In this respect, Ge10S90 samples are regarded as crystallized glasses. In the Ge-rich region, the GeS4 tetrahedra are connected with bridging Ge atoms. The connection makes a new rigid network. The bridging Ge-S bond is weaker than the intratetrahedron bond, and this leads to drastic changes in the optical properties
Designing and Developing Dynamic Decision Support Information for Disaster Response
Recently, Japan has been struck by extremely heavy rains and serious floods. To plan for disaster response, it is needed to consider various information such as precipitation, water level of rivers, weather forecasts, and so on. However, it requires high skill to integrate this information to utilize. Our study aims to provide the decision support information for both the national and the local governments by dynamic risk analysis to enforce disaster resilience. To demonstrate the effectiveness of disaster dynamics analysis, we have developed the “Dynamic Decision Support System for Disaster Response (DDS4D)”. DDS4D synthesizes natural observation data, social observation data, and geospatial data to provide decision support information that fits decision maker's the situational awareness in real time. Verifying several information products generated by DDS4D in the actual flood in Japan, we confirmed that they could support decision making of government.</p
Structural peculiarities of -FeO / GaN epitaxial layers unveiled by high-resolution transmission electron microscopy and neutron reflectometry
The present paper is dedicated to the structural study of crystallographic
peculiarities appearing in epitaxial films of metastable epsilon iron oxide
(-FeO) grown by pulsed laser deposition onto a
semiconductor GaN (0001) substrate. The columnar structure of the nanoscale
-FeO films has been for the first time investigated using
high resolution electron microscopy (HRTEM) direct space technique complemented
by reciprocal space methods of high-energy electron diffraction and
color-enhanced HRTEM image Fourier filtering. The study of
-FeO / GaN interface formation has been further expanded
by carrying out a depth resolved analysis of density and chemical composition
by neutron reflectometry and energy-dispersive X-ray spectroscopy. The obtained
results shed light onto the properties and the origin of the enigmatic
few-nanometer thick low density transition layer residing at the
-FeO / GaN interface. A detailed knowledge of the
properties of this layer is believed to be highly important for the development
of -FeO / GaN heterostructures that can potentially become
part of the iron-oxide based ferroic-on-semiconductor devices with room
temperature magneto-electric coupling.Comment: 14 pages, 9 figure
Polyamine modification by acrolein exclusively produces 1,5-diazacyclooctanes: A previously unrecognized mechanism for acrolein-mediated oxidative stress
Acrolein, a toxic unsaturated aldehyde generated as a result of oxidative stress, readily reacts with a variety of nucleophilic biomolecules. Polyamines, which produced acrolein in the presence of amine oxidase, were then found to react with acrolein to produce 1,5-diazacyclooctane, a previously unrecognized but significant downstream product of oxidative stress. Although diazacyclooctane formation effectively neutralized acrolein toxicity, the diazacyclooctane hydrogel produced through a sequential diazacyclooctane polymerization reaction was highly cytotoxic. This study suggests that diazacyclooctane formation is involved in the mechanism underlying acrolein-mediated oxidative stress. © 2014 the Partner Organisations
Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures
The physical properties of polycrystalline materials depend on their microstructure, which is the nano-to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD)
RNA activation of haploinsufficient Foxg1 gene in murine neocortex
More than one hundred distinct gene hemizygosities are specifically linked to epilepsy, mental retardation, autism, schizophrenia and neuro-degeneration. Radical repair of these gene deficits via genome engineering is hardly feasible. The same applies to therapeutic stimulation of the spared allele by artificial transactivators. Small activating RNAs (saRNAs) offer an alternative, appealing approach. As a proof-of-principle, here we tested this approach on the Rett syndrome-linked, haploinsufficient, Foxg1 brain patterning gene. We selected a set of artificial small activating RNAs (saRNAs) upregulating it in neocortical precursors and their derivatives. Expression of these effectors achieved a robust biological outcome. saRNA-driven activation (RNAa) was limited to neural cells which normally express Foxg1 and did not hide endogenous gene tuning. saRNAs recognized target chromatin through a ncRNA stemming from it. Gene upregulation required Ago1 and was associated to RNApolII enrichment throughout the Foxg1 locus. Finally, saRNA delivery to murine neonatal brain replicated Foxg1-RNAa in vivo
In Vitro Differentiation of Mouse Embryonic Stem Cells into Neurons of the Dorsal Forebrain
Pluripotent embryonic stem cells (ESCs) are able to differentiate into all cell types in the organism including cortical neurons. To follow the dynamic generation of progenitors of the dorsal forebrain in vitro, we generated ESCs from D6-GFP mice in which GFP marks neocortical progenitors and neurons after embryonic day (E) 10.5. We used several cell culture protocols for differentiation of ESCs into progenitors and neurons of the dorsal forebrain. In cell culture, GFP-positive cells were induced under differentiation conditions in quickly formed embryoid bodies (qEBs) after 10–12 day incubation. Activation of Wnt signaling during ESC differentiation further stimulated generation of D6-GFP-positive cortical cells. In contrast, differentiation protocols using normal embryoid bodies (nEBs) yielded only a few D6-GFP-positive cells. Gene expression analysis revealed that multiple components of the canonical Wnt signaling pathway were expressed during the development of embryoid bodies. As shown by immunohistochemistry and quantitative qRT-PCR, D6-GFP-positive cells from qEBs expressed genes that are characteristic for the dorsal forebrain such as Pax6, Dach1, Tbr1, Tbr2, or Sox5. qEBs culture allowed the formation of a D6-GFP positive pseudo-polarized neuroepithelium with the characteristic presence of N-cadherin at the apical pole resembling the structure of the developing neocortex
Overexpression of FOXG1 contributes to TGF-β resistance through inhibition of p21WAF1/CIP1 expression in ovarian cancer
Background:Loss of growth inhibitory response to transforming growth factor-Β (TGF-Β) is a common feature of epithelial cancers. Recent studies have reported that genetic lesions and overexpression of oncoproteins in TGF-Β/Smads signalling cascade contribute to the TGF-Β resistance. Here, we showed that the overexpressed FOXG1 was involved in attenuating the anti-proliferative control of TGF-Β/Smads signalling in ovarian cancer.Methods:FOXG1 and p21 WAF1/CIP1 expressions were evaluated by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR), western blot and immunohistochemical analyses. The effect of FOXG1 on p21 WAF1/CIP1 transcriptional activity was examined by luciferase reporter assays. Cell lines stably expressing or short hairpin RNA interference-mediated knockdown FOXG1 were established for studying the gain-or-loss functional effects of FOXG1. XTT cell proliferation assay was used to measure cell growth of ovarian cancer cells.Results:Quantitative RT-PCR and western blot analyses showed that FOXG1 was upregulated and inversely associated with the expression levels of p21 WAF1/CIP1 in ovarian cancer. The overexpression of FOXG1 was significantly correlated with high-grade ovarian cancer (P0.025). Immunohistochemical analysis on ovarian cancer tissue array was further evidenced that FOXG1 was highly expressed and significantly correlated with high-grade ovarian cancer (P0.048). Functionally, enforced expression of FOXG1 selectively blocked the TGF-Β-induced p21 WAF1/CIP1 expressions and increased cell proliferation in ovarian cancer cells. Conversely, FOXG1 knockdown resulted in a 20-26% decrease in cell proliferation together with 16-33% increase in p21 WAF1/CIP1 expression. Notably, FOXG1 was able to inhibit the p21 WAF1/CIP1 promoter activity in a p53-independent manner by transient reporter assays.ConclusionOur results suggest that FOXG1 acts as an oncoprotein inhibiting TGF-Β-mediated anti-proliferative responses in ovarian cancer cells through suppressing p21 WAF1/CIP1 transcription. © 2009 Cancer Research UK All rights reserved.published_or_final_versio
Patterns of Neurogenesis and Amplitude of Reelin Expression Are Essential for Making a Mammalian-Type Cortex
The mammalian neocortex is characterized as a six-layered laminar structure, in which distinct types of pyramidal neurons are distributed coordinately during embryogenesis. In contrast, no other vertebrate class possesses a brain region that is strictly analogous to the neocortical structure. Although it is widely accepted that the pallium, a dorsal forebrain region, is specified in all vertebrate species, little is known of the differential mechanisms underlying laminated or non-laminated structures in the pallium. Here we show that differences in patterns of neuronal specification and migration provide the pallial architectonic diversity. We compared the neurogenesis in mammalian and avian pallium, focusing on subtype-specific gene expression, and found that the avian pallium generates distinct types of neurons in a spatially restricted manner. Furthermore, expression of Reelin gene is hardly detected in the developing avian pallium, and an experimental increase in Reelin-positive cells in the avian pallium modified radial fiber organization, which resulted in dramatic changes in the morphology of migrating neurons. Our results demonstrate that distinct mechanisms govern the patterns of neuronal specification in mammalian and avian pallial development, and that Reelin-dependent neuronal migration plays a critical role in mammalian type corticogenesis. These lines of evidence shed light on the developmental programs underlying the evolution of the mammalian specific laminated cortex
- …