929 research outputs found
Exact-Differential Large-Scale Traffic Simulation
Analyzing large-scale traffics by simulation needs repeating execution many times with various patterns of scenarios or parameters. Such repeating execution brings about big redundancy because the change from a prior scenario to a later scenario is very minor in most cases, for example, blocking only one of roads or changing the speed limit of several roads. In this paper, we propose a new redundancy reduction technique, called exact-differential simulation, which enables to simulate only changing scenarios in later execution while keeping exactly same results as in the case of whole simulation. The paper consists of two main efforts: (i) a key idea and algorithm of the exact-differential simulation, (ii) a method to build large-scale traffic simulation on the top of the exact-differential simulation. In experiments of Tokyo traffic simulation, the exact-differential simulation shows 7.26 times as much elapsed time improvement in average and 2.26 times improvement even in the worst case as the whole simulation
Towards large-scale what-if traffic simulation with exact-differential simulation
To analyze and predict a behavior of large-scale traffics with what-if simulation, it needs to repeat many times with various patterns of what-if scenarios. In this paper, we propose new techniques to efficiently repeat what-if simulation tasks with exact-differential simulation. The paper consists of two main efforts: what-if scenario filtering and exact-differential cloning. The what-if scenario filtering enables to pick up meaningful what-if scenarios and reduces the number of what-if scenarios, which directly decreases total execution time of repeating. The exact-differential cloning enables to execute exact-differential simulation tasks in parallel to improve its total execution time. In our preliminary evaluation in Tokyo bay area's traffic simulation, we show potential of our proposals by estimating how the what-if scenarios filtering reduces the number of meaningless scenarios and also by estimating a performance improvement from our previous works with the exact-differential cloning
Case Study of a 20 T- φ400 mm Room Temperature Bore Superconducting Outsert for a 45 T Hybrid Magnet
Salvado de harina y salvado de fécula de mandioca como potenciales excipientes para comprimidos
Objectives: The physicochemical characteristics of bran of cassava starch flour and bran of cassava flour (viz. organoleptic characteristics, pH value, moisture content, total ashes, lipid, protein, starch and fiber contents) and biopharmacotechnical parameters (viz. granulometry, flow capacity, angle at rest, outflow time and apparent density) were evaluated aiming at assessing their potential use as tablet excipients. Methodos: Three tablet formulations of venlafaxine hydrochloride were proposed, having as excipients bran of cassava flour, bran of cassava starch flour and Starch 1500®. The tablets were produced using two different pressures (98±5 MPa and 32±6 Mpa) and their mechanical (hardness and friability) and dissolubility characteristics were evaluated. Results and Conclusions: The tablets produced with both cassava flours, using higher pressures, presented similar physicochemical characteristics to those obtained with the excipient Starch1500®, thus indicating that cassava flours possess the potential to be used as disintegrating agents in tablets.Objetivos: Se evaluaron características físico-químicas del salvado de harina y del salvado de la fécula de mandioca (características organolépticas, pH, humedad, cenizas totales y contenido de lípidos, proteínas, almidones y fibras) y biofarmacotécnicas (granulometría, capacidad de flujo, ángulo en reposo, tiempo de salida y densidad aparente) con el objetivo de evaluar el uso de estos residuos como excipientes para comprimidos. Métodos: Se propusieron tres formulaciones en comprimidos de venlafaxina teniendo como excipientes salvado de harina de mandioca, salvado de fécula de mandioca y Starch 1500 ®. Las pastillas se produjeron utilizando dos presiones diferentes (98 ± 5 MPa y 32 ± 6 Mpa). Las características mecánicas (dureza y friabilidad) y de disolución de los comprimidos se evaluaron. Resultados y Conclusiones: Los comprimidos producidos con ambos salvados de mandioca, utilizando las presiones más elevadas, presentaron características físico-químicas similares a las obtenidas con el excipiente Starch1500®, indicando que las harinas de mandioca poseen potencial para ser utilizadas como agentes desintegrantes en comprimidos
Mapeamento de QTL associados à mancha angular e ao oídio em feijão com base em um mapa de ligação enriquecido com marcadores RGA.
Este trabalho teve como objetivos a construção de um mapa genético enriquecido com marcadores RGA (Resistance Gene Analogs) em feijão (2n = 22) e o seu uso no mapeamento de QTL de resistência ao oídio (Erysiphe polygoni) e à mancha angular (Phaeoisariopsis griseola)
Embryonic Senescence and Laminopathies in a Progeroid Zebrafish Model
Background: Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist. Principal Findings: We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA). Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8), showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37) fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult Progerin fish survived and remained fertile with relatively mild phenotypes only, but had shortened lifespan with obvious distortion of body shape. Conclusion: We generated new zebrafish models for a human premature aging disorder, and further demonstrated the utility for studying laminopathies. Premature aging could also be modeled in zebrafish embryos. This genetic model may thus provide a new platform for future drug screening as well as genetic analyses aimed at identifying modifier genes that influence not only progeria and laminopathies but also other age-associated human diseases common in vertebrates.Ellison Medical FoundationGlenn Foundation for Medical Researc
- …