6 research outputs found

    Synthesis, Spectroscopic Characterization And Antimicrobial Evaluation of Novel Nitrogen Containing Metal Complexes

    Get PDF
    Four novel Mn(II), Co(II), Cu(II) complexes with nitrogen containing ligand (L) i.e. N,N-((Z)-ethane-1,2-diylidine)bis(2-amino benzo hydrazide) have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), molar conductance and magnetic susceptibility measurements. From the spectroscopic and magnetic studies it has been concluded that all complexes have a six coordinated octahedral geometry. The Schiff base and their metal complexes have also been screened for their antibacterial and antifungal activities by using a modified Kirby-Bauer disc diffusion method

    Synthesis, Spectral Characterization, Thermal and In vitro Antimicrobial Studies for Novel Co(II) and Ni(II) Complexes of (N,N'-(1,2-Phenylene)Bis(2-Aminobenzamide)

    Get PDF
    Novel metal complexes of Co(II) and Ni(II) have been  prepared from reaction of their different salts with previously prepared ligand (L) namely (N,N'-(1,2-phenylene)bis(2-aminobenzamide). Synthesis ligand and its metal (II) complexes (1-5) were reported and characterized with the help of analytical and physiochemical analysis as elemental, IR spectra, thermal (TG/DTG), UV-Vis, magnetic susceptibility and molar conductance in DMF, On the view of the previous data and measurements, the structure and composition species behave as mononuclear and octahedral geometry has been proposed for all the complexes except for complex (1) adopted tetrahedral structure. Furthermore, the in vitro antibacterial Staphylococcus aureus (ATCC 25923) as Gram-positive strain, Escherichia coli (ATCC 25922) as Gram-negative strain and antifungal Candida albicans (ATCC 10231) have been studied for all samples using disc diffusion method against Ampicillin and Fluconazole as positive controls, respectively. The results show that complexation facilitates the activity of most studied metal complexes than the free ligand

    Controlled morphology and dimensionality evolution of NiPd bimetallic nanostructures

    Get PDF
    Controlling the morphology of noble metal-based nanostructures is a powerful strategy for optimizing their catalytic performance. Here, we report a one-pot aqueous synthesis of versatile NiPd nanostructures at room temperature without employing organic solvents or surfactants. The synthesis can be tuned to form zero-dimensional (0D) architectures, such as core–shell and hollow nanoparticles (NPs), as well as nanostructures with higher dimensionality, such as extended nanowire networks and three-dimensional (3D) nanodendrites. The diverse morphologies were successfully obtained through modification of the HCl concentration in the Pd precursor solution, and the reaction aging time. An in-depth understanding of the formation mechanism and morphology evolution are described in detail. A key factor in the structural evolution of the nanostructures was the ability to tune the reduction rate and to protonate the citrate stabiliser by adding HCl. Spherical core–shell NPs were formed by the galvanic replacement-free deposition of Pd on Ni NPs which can be transformed to hollow NPs via a corrosion process. High concentrations of HCl led to the transition of isotropic spherical NPs into anisotropic wormlike nanowire networks, created through an oriented attachment process. Aging of these nanowire networks resulted in the formation of 3D porous nanodendrites via a corrosion process. The diverse structures of NiPd NPs were anchored onto acid treated-activated carbon (AC) and exhibited improved catalytic efficiency towards the hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP)
    corecore