8 research outputs found

    West Nile virus in overwintering mosquitoes, central Europe

    Full text link
    Background: West Nile virus (WNV) is currently the most important mosquito-borne pathogen spreading in Europe. Data on overwintering of WNV in mosquitoes are crucial for understanding WNV circulation in Europe; nonetheless, such data were not available so far.Results: A total of 28,287 hibernating mosquitoes [27,872 Culex pipiens, 73 Anopheles maculipennis (sensu lato), and 342 Culiseta annulata], caught in February or March between 2011 and 2017 in a WNV-endemic region of South Moravia, Czech Republic, were screened for the presence of WNV RNA. No WNV positive pools were found from 2011 to 2016, while lineage 2 WNV RNA was detected in three pools of Culex pipens mosquitoes collected in 2017 at two study sites.Conclusions: To the best of our knowledge, this is the first record of WNV RNA in overwintering mosquitoes in Europe. The data support the hypothesis of WNV persistence in mosquitoes throughout the winter season in Europe

    Urbanization impact on mosquito community and the transmission potential of filarial infection in central Europe

    No full text
    Abstract Background Despite long-term research on dirofilariosis in Slovakia, little attention has thus far been paid to Dirofilaria vectors. The particular aim of the present study was molecular screening for filarioid parasites in two different habitats of Bratislava, the capital city of Slovakia. In addition, the effect of urbanisation on mosquito species abundance and composition, associated with the risk of mosquito-borne infections, was studied and discussed. Methods Mosquitoes were identified by morphological features, and molecular methods were also used for determination of selected individuals belonging to cryptic species from the Anopheles maculipennis and Culex pipiens complexes. The presence of filarioid DNA (Dirofilaria repens, Dirofilaria immitis and Setaria spp.) was detected using standard PCR approaches and sequencing. Results A total of 6957 female mosquitoes were collected for the study. Overall, the most abundant mosquito species was Aedes vexans, closely followed by unidentified members of the Cx. pipiens complex and the less numerous but still plentiful Ochlerotatus sticticus species. Further investigation of mosquito material revealed 4.26% relative prevalence of Dirofilaria spp., whereby both species, D. repens and D. immitis, were identified. The majority of positive mosquito pools had their origin in a floodplain area on the outskirts of the city, with a relative prevalence of 5.32%; only two mosquito pools (1.26%) were shown to be positive in the residential zone of Bratislava. Setaria spp. DNA was not detected in mosquitoes within this study. Conclusions The study presented herein represents initial research focused on molecular mosquito screening for filarioid parasites in urban and urban-fringe habitats of Bratislava, Slovakia. Molecular analyses within the Cx. pipiens complex identified two biotypes: Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus. To our knowledge, Dirofilaria spp. were detected for the first time in Slovakia in mosquitoes other than Ae. vexans, i.e. D. repens in Anopheles messeae and unidentified members of An. maculipennis and Cx. pipiens complexes, and D. immitis in Coquillettidia richiardii and Cx. pipiens biotype pipiens. Both dirofilarial species were found in Och. sticticus. The suitable conditions for the vectors’ biology would represent the main risk factor for dirofilariosis transmission

    First Record of Mosquito-Borne Kyzylagach Virus in Central Europe

    No full text
    RNA of Kyzylagach virus (KYZV), a Sindbis-like mosquito-borne alphavirus from Western equine encephalitis virus complex, was detected in four pools (out of 221 pools examined), encompassing 10,784 female Culex modestus mosquitoes collected at a fishpond in south Moravia, Czech Republic, with a minimum infection rate of 0.04%. This alphavirus was never detected in Central Europe before

    Co-circulation of Usutu virus and West Nile virus in a reed bed ecosystem

    Get PDF
    Abstract Background Mosquito-borne flaviviruses are a major public health threat in many countries worldwide. In Central Europe, West Nile virus (WNV) and Usutu virus (USUV), both belonging to the Japanese encephalitis virus group (Flaviviridae) have emerged in the last decennium. Surveillance of mosquito vectors for arboviruses is a sensitive tool to evaluate virus circulation and consequently to estimate the public health risk. Methods Mosquitoes (Culicidae) were collected at South-Moravian (Czech Republic) fishponds between 2010 and 2014. A total of 61,770 female Culex modestus Ficalbi mosquitoes, pooled to 1,243 samples, were examined for flaviviruses by RT-PCR. Results One pool proved positive for USUV RNA. Phylogenetic analysis demonstrated that this Czech USUV strain is closely related to Austrian and other Central European strains of the virus. In addition, nine strains of WNV lineage 2 were detected in Cx. modestus collected in the same reed bed ecosystem. Conclusions This is the first detection of USUV in Cx. modestus. The results indicate that USUV and WNV may co-circulate in a sylvatic cycle in the same habitat, characterised by the presence of water birds and Cx. modestus mosquitoes, serving as hosts and vectors, respectively, for both viruses

    Molecular detection and phylogenetic analysis of Hepatozoon spp. in questing Ixodes ricinus ticks and rodents from Slovakia and Czech Republic

    No full text
    By amplification and sequencing of 18S rRNA gene fragments, Hepatozoon spp. DNA was detected in 0.08 % (4/5057) and 0.04 % (1/2473) of questing Ixodes ricinus ticks from Slovakia and Czech Republic, respectively. Hepatozoon spp. DNA was also detected in spleen and/or lungs of 4.45 % (27/606) of rodents from Slovakia. Prevalence of infection was significantly higher in Myodes glareolus (11.45 %) than in Apodemus spp. (0.28 %) (P < 0.001). Sequencing of 18S rRNA Hepatozoon spp. gene amplicons from I. ricinus showed 100 % identity with Hepatozoon canis isolates from red foxes or dogs in Europe. Phylogenetic analysis showed that at least two H. canis 18S rRNA genotypes exist in Slovakia of which one was identified also in the Czech Republic. The finding of H. canis in questing I. ricinus suggests the geographical spread of the parasite and a potential role of other ticks as its vectors in areas where Rhipicephalus sanguineus is not endemic. Sequencing of 18S rRNA gene amplicons from M. glareolus revealed the presence of two closely related genetic variants, Hepatozoon sp. SK1 and Hepatozoon sp. SK2, showing 99–100 % identity with isolates from M. glareolus from other European countries. Phylogenetic analysis demonstrates that 18S rRNA variants SK1 and SK2 correspond to previously described genotypes UR1 and UR2 of H. erhardovae, respectively. The isolate from Apodemus flavicollis (Hepatozoon sp. SK3b) was 99 % identical with isolates from reptiles in Africa and Asia. Further studies are necessary to identify the taxonomic status of Hepatozoon spp. parasitizing rodents in Europe and the host-parasite interactions in natural foci.Fil: Hamšíková, Zuzana. Slovak Academy of Sciences; EslovaquiaFil: Silaghi, Cornelia. Universitat Zurich; Suiza. Ludwig Maximilians Universitat; AlemaniaFil: Rudolf, Ivo. Academy of Sciences of the Czech Republic; República ChecaFil: Venclíková, Kristýna. Academy of Sciences of the Czech Republic; República ChecaFil: Mahríková, Lenka. Slovak Academy of Sciences; EslovaquiaFil: Slovák, Mirko. Slovak Academy of Sciences; EslovaquiaFil: Mendel, Jan. Academy of Sciences of the Czech Republic; República ChecaFil: Blažejová, Hana. Academy of Sciences of the Czech Republic; República ChecaFil: Berthová, Lenka. Academy of Sciences of the Czech Republic; República ChecaFil: Kocianová, Elena. Academy of Sciences of the Czech Republic; República ChecaFil: Hubálek, Zdeněk. Academy of Sciences of the Czech Republic; República ChecaFil: Schnittger, Leonhard. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; ArgentinaFil: Kazimírová, Mária. Slovak Academy of Sciences; Eslovaqui
    corecore