22 research outputs found

    Comparison of Jaw Mode and Field Width for Left-Breast Cancer Using TomoDirect Three-Dimensional Conformal Radiation Therapy: A Phantom Study

    No full text
    It is very important to use effective parameters in the treatment plan of breast cancer patients in TomoDirect (TD)-three-dimensional conformal radiation therapy (TD-3DCRT). The objective of this study was to compare the radiation treatment plans to the parameters (jaw width and jaw mode) of TD-3DCRT for left-breast cancer. This study was conducted using the phantom, the jaw mode (fixed and dynamic) and field width (2.5 cm and 5.0 cm) were controlled to compare the TD-3DCRT treatment plans. There was small difference in the conformity index (CI) and homogeneity index (HI) values for target according to the jaw mode for each field width. As a result of observation in terms of dose, treatment time and unnecessary damage to surrounding normal organs could be minimized when dynamic jaw with a field width of 5.0 cm was used. In conclusion, we verified that the use of dynamic jaws and 5.0 cm field width was effective in left-breast cancer radiotherapy plan using TD-3DCRT

    Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies

    No full text
    The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries

    Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies

    No full text
    The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries

    Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder

    No full text
    As electronic devices and mainboards become smaller, the need for thermal conductive materials having excellent internal heat dissipation is increasing. In this study, nano thermal grease was prepared by mixing in copper nanopowder, which is used as a heat transfer medium in thermal grease, which is a kind of thermal conductive material, with silicon oil. In addition, copper powder was mixed with graphene and alumina, respectively, and the thermal conductivity performance was compared. As a result, the thermal conductivity improved by 4.5 W/m·k over the silicon base, and the upward trend of thermal conductivity increased steadily up to 15 vol. %, and the increasing trend decreased after 20 vol. %. In addition, the increased rate of thermal conductivity from 0 to 5 vol. % and 10 to 15 vol. % was the largest

    <i>Viburnum stellato-tomentosum</i> Extract Suppresses Obesity and Hyperglycemia through Regulation of Lipid Metabolism in High-Fat Diet-Fed Mice

    No full text
    The potential biological activities of Viburnum stellato-tomentosum (VS), a plant mainly found in Costa Rica, have yet to be reported. Supplementation of VS extract for 17 weeks significantly decreased body weight gain, fat weight, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and triglyceride levels in high-fat diet (HFD)-fed C57BL/6J mice. The molecular mechanisms underlying the anti-obesity and glucose-lowering effects of VS extract were investigated. VS extract suppressed adipocyte hypertrophy by regulating lipogenesis-related CCAAT/enhancer-binding protein α (C/EBPα) and insulin sensitivity-related peroxisome proliferator-activated receptor γ (Pparg) expression in adipose tissue (AT) and hepatic steatosis by inhibiting C/EBPα and lipid transport-related fatty acid binding protein 4 (FABP4) expression. VS extract enhanced muscular fatty acid β-oxidation-related AMP-activated protein kinase (AMPK) and PPARα expression with increasing Pparg levels. Furthermore, VS extract contained a much higher content of amentoflavone (AMF) (29.4 mg/g extract) compared to that in other Viburnum species. AMF administration decreased Cebpa and Fabp4 levels in the AT and liver, as well as improved insulin signaling-related insulin receptor substrate 1 (Irs1) and glucose transporter 1 (Glut1) levels in the muscle of HFD-fed mice. This study elucidated the in vivo molecular mechanisms of AMF for the first time. Therefore, VS extract effectively diminished obesity and hyperglycemia by suppressing C/EBPα-mediated lipogenesis in the AT and liver, enhancing PPARα-mediated fatty acid β-oxidation in muscle, and PPARγ-mediated insulin sensitivity in AT and muscle

    Study on ZrSi<sub>2</sub> as a Candidate Material for Extreme Ultraviolet Pellicles

    No full text
    An extreme ultraviolet (EUV) pellicle is an ultrathin membrane at a stand-off distance from the reticle surface that protects the EUV mask from contamination during the exposure process. EUV pellicles must exhibit high EUV transmittance, low EUV reflectivity, and superior thermomechanical durability that can withstand the gradually increasing EUV source power. This study proposes an optimal range of optical constants to satisfy the EUV pellicle requirements based on the optical simulation results. Based on this, zirconium disilicide (ZrSi2), which is expected to satisfy the optical and thermomechanical requirements, was selected as the EUV pellicle candidate material. An EUV pellicle composite comprising a ZrSi2 thin film deposited via co-sputtering was fabricated, and its thermal, optical, and mechanical properties were evaluated. The emissivity increased with an increase in the thickness of the ZrSi2 thin film. The measured EUV transmittance (92.7%) and reflectivity (0.033%) of the fabricated pellicle satisfied the EUV pellicle requirements. The ultimate tensile strength of the pellicle was 3.5 GPa. Thus, the applicability of the ZrSi2 thin film as an EUV pellicle material was verified

    Presentation_1_Effect of structural variation in the promoter region of RsMYB1.1 on the skin color of radish taproot.pptx

    No full text
    Accumulation of anthocyanins in the taproot of radish is an agronomic trait beneficial for human health. Several genetic loci are related to a red skin or flesh color of radish, however, the functional divergence of candidate genes between non-red and red radishes has not been investigated. Here, we report that a novel genetic locus on the R2 chromosome, where RsMYB1.1 is located, is associated with the red color of the skin of radish taproot. A genome-wide association study (GWAS) of 66 non-red-skinned (nR) and 34 red-skinned (R) radish accessions identified three nonsynonymous single nucleotide polymorphisms (SNPs) in the third exon of RsMYB1.1. Although the genotypes of SNP loci differed between the nR and R radishes, no functional difference in the RsMYB1.1 proteins of nR and R radishes in their physical interaction with RsTT8 was detected by yeast-two hybrid assay or in anthocyanin accumulation in tobacco and radish leaves coexpressing RsMYB1.1 and RsTT8. By contrast, insertion- or deletion-based GWAS revealed that one large AT-rich low-complexity sequence of 1.3–2 kb was inserted in the promoter region of RsMYB1.1 in the nR radishes (RsMYB1.1nR), whereas the R radishes had no such insertion; this represents a presence/absence variation (PAV). This insertion sequence (RsIS) was radish specific and distributed among the nine chromosomes of Raphanus genomes. Despite the extremely low transcription level of RsMYB1.1nR in the nR radishes, the inactive RsMYB1.1nR promoter could be functionally restored by deletion of the RsIS. The results of a transient expression assay using radish root sections suggested that the RsIS negatively regulates the expression of RsMYB1.1nR, resulting in the downregulation of anthocyanin biosynthesis genes, including RsCHS, RsDFR, and RsANS, in the nR radishes. This work provides the first evidence of the involvement of PAV in an agronomic trait of radish.</p

    Table_1_Effect of structural variation in the promoter region of RsMYB1.1 on the skin color of radish taproot.docx

    No full text
    Accumulation of anthocyanins in the taproot of radish is an agronomic trait beneficial for human health. Several genetic loci are related to a red skin or flesh color of radish, however, the functional divergence of candidate genes between non-red and red radishes has not been investigated. Here, we report that a novel genetic locus on the R2 chromosome, where RsMYB1.1 is located, is associated with the red color of the skin of radish taproot. A genome-wide association study (GWAS) of 66 non-red-skinned (nR) and 34 red-skinned (R) radish accessions identified three nonsynonymous single nucleotide polymorphisms (SNPs) in the third exon of RsMYB1.1. Although the genotypes of SNP loci differed between the nR and R radishes, no functional difference in the RsMYB1.1 proteins of nR and R radishes in their physical interaction with RsTT8 was detected by yeast-two hybrid assay or in anthocyanin accumulation in tobacco and radish leaves coexpressing RsMYB1.1 and RsTT8. By contrast, insertion- or deletion-based GWAS revealed that one large AT-rich low-complexity sequence of 1.3–2 kb was inserted in the promoter region of RsMYB1.1 in the nR radishes (RsMYB1.1nR), whereas the R radishes had no such insertion; this represents a presence/absence variation (PAV). This insertion sequence (RsIS) was radish specific and distributed among the nine chromosomes of Raphanus genomes. Despite the extremely low transcription level of RsMYB1.1nR in the nR radishes, the inactive RsMYB1.1nR promoter could be functionally restored by deletion of the RsIS. The results of a transient expression assay using radish root sections suggested that the RsIS negatively regulates the expression of RsMYB1.1nR, resulting in the downregulation of anthocyanin biosynthesis genes, including RsCHS, RsDFR, and RsANS, in the nR radishes. This work provides the first evidence of the involvement of PAV in an agronomic trait of radish.</p

    Atomization driven crystalline nanocarbon based single-atom catalysts for superior oxygen electroreduction

    No full text
    © 2022 The AuthorsAtom-migration-trapping (AMT) is an effective and straightforward strategy for fabricating single-atom catalysts (SACs), but understanding the mechanism and effects of anchoring sites on AMT are formidable challenges. Here, we demonstrate that AMT phenomena occurs in crystalline porous nanocarbon, which allows development of highly efficient SACs via systematic investigation of atomization process and chemical state of active sites. An arc discharge-based bottom-up synthesis can generate an ideal porous nanocarbon with controllable nitrogen functionality, containing metal nanoparticles for AMT. Pre-formed N-functionalities in as-synthesized catalyst play important role in capturing single metal species, while additional ammonia treatment successfully modulates coordination geometry of active sites. The atomic cobalt catalyst exhibits superior oxygen reduction activity with remarkable power performance in single-cell experiments (752 mW cm−2), exceeding the reported Co-N atomic catalysts. Our findings provide not only new perspectives in AMT phenomena but also strategies to develop an efficient and practical SACs in energy conversion systems.11Nsciescopu
    corecore