27,382 research outputs found
A note on modular forms and generalized anomaly cancellation formulas
By studying modular invariance properties of some characteristic forms, we
prove some new anomaly cancellation formulas which generalize the Han-Zhang and
Han-Liu-Zhang anomaly cancellation formula
The existence of periodic solution for infinite dimensional Hamiltonian systems
In this paper, we will consider a kind of infinite dimensional Hamiltonian
system(HS), by the method of saddle point reduction, topology degree and the
index, we will get the existence of periodic solution for (HS)
Shock-induced consolidation and spallation of Cu nanopowders
A useful synthesis technique, shock synthesis of bulk nanomaterials from nanopowders, is explored here with molecular dynamics simulations. We choose nanoporous Cu (∼11 nm in grain size and 6% porosity) as a representative system, and perform consolidation and spallation simulations. The spallation simulations characterize the consolidated nanopowders in terms of spall strength and damage mechanisms. The impactor is full density Cu, and the impact velocity (u_i) ranges from 0.2 to 2 km s^(−1). We present detailed analysis of consolidation and spallation processes, including atomic-level structure and wave propagation features. The critical values of u_i are identified for the onset plasticity at the contact points (0.2 km s^(−1)) and complete void collapse (0.5 km s^(−1)). Void collapse involves dislocations, lattice rotation, shearing/friction, heating, and microkinetic energy. Plasticity initiated at the contact points and its propagation play a key role in void collapse at low u_i, while the pronounced, grain-wise deformation may contribute as well at high u_i. The grain structure gives rise to nonplanar shock response at nanometer scales. Bulk nanomaterials from ultrafine nanopowders (∼10 nm) can be synthesized with shock waves. For spallation, grain boundary (GB) or GB triple junction damage prevails, while we also observe intragranular voids as a result of GB plasticity
Excitation Energy as a Basic Variable to Control Nuclear Disassembly
Thermodynamical features of Xe system is investigated as functions of
temperature and freeze-out density in the frame of lattice gas model. The
calculation shows different temperature dependence of physical observables at
different freeze-out density. In this case, the critical temperature when the
phase transition takes place depends on the freeze-out density. However, a
unique critical excitation energy reveals regardless of freeze-out density when
the excitation energy is used as a variable insteading of temperature.
Moreover, the different behavior of other physical observables with temperature
due to different vanishes when excitation energy replaces temperature.
It indicates that the excitation energy can be seen as a more basic quantity to
control nuclear disassembly.Comment: 3 pages, 2 figures, Revte
Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries
We perform molecular dynamics simulations of Cu bicrystals with two important grain boundaries (GBs), Σ3 coherent twin boundaries (CTB), and symmetric incoherent twin boundaries (SITB) under planar shock wave loading. It is revealed that the shock response (deformation and spallation) of the Cu bicrystals strongly depends on the GB characteristics. At the shock compression stage, elastic shock wave can readily trigger GB plasticity at SITB but not at CTB. The SITB can induce considerable wave attenuation such as the elastic precursor decay via activating GB dislocations. For example, our simulations of a Cu multilayer structure with 53 SITBs (∼1.5-μm thick) demonstrate a ∼80% elastic shock decay. At the tension stage, spallation tends to occur at CTB but not at SITB due to the high mobility of SITB. The SITB region transforms into a threefold twin via a sequential partial dislocation slip mechanism, while CTB preserves its integrity before spallation. In addition, deformation twinning is a mechanism for inducing surface step during shock tension stage. The drastically different shock response of CTB and SITB could in principle be exploited for, or benefit, interface engineering and materials design
Shear and Layer Breathing Modes in Multilayer MoS2
We study by Raman scattering the shear and layer breathing modes in
multilayer MoS2. These are identified by polarization measurements and symmetry
analysis. Their positions change with the number of layers, with different
scaling for odd and even layers. A chain model explains the results, with
general applicability to any layered material, and allows one to monitor their
thickness
Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly
Hawking flux from the Schwarzschild black hole with a global monopole is
obtained by using Robinson and Wilczek's method. Adopting a dimension reduction
technique, the effective quantum field in the (3+1)--dimensional global
monopole background can be described by an infinite collection of the
(1+1)--dimensional massless fields if neglecting the ingoing modes near the
horizon, where the gravitational anomaly can be cancelled by the
(1+1)--dimensional black body radiation at the Hawking temperature.Comment: 4 pages, no figure, 3nd revsion with one reference adde
- …