47 research outputs found

    Assessment of salt stress resistance of concrete containing sodium silicate-based nano-silica

    No full text
    This study proposes advanced sodium silicate-based nano-silica (SS) as a supplementary cementitious material for enhancing the physical properties and electrochemical performance of the concrete to increase the salt stress resistance of reinforced concrete structures located in the seashore. Moreover, the mixture of the proposed material was compared with ordinary Portland cement and binary-blended cement mixtures, which are conventionally used. In order to evaluate salt stress resistance of reinforced concrete, two different laboratory-scale salt stress environments are artificially designed and one natural place along the seafront is adopted, and reinforced concrete specimens are exposed to those environments. In addition to salt stress resistance properties of all mixtures the compressive strength of all concrete mixtures is conducted. The results of salt stress resistance test for all environments show that the mixtures containing SS have much better salt stress resistance than conventional mixtures. Meanwhile, the amount of SS between 5% and 10% of SS to cement ratio by weight do not significantly affect the salt stress resistance. For compressive strength, specimens containing SS show higher compressive strength than other concrete mixtures

    Political identity, preference, and persuasion

    No full text
    The current research examines how political identity shapes preferences for objects and messages that highlight either equality or hierarchy. We find that liberals show a greater preference for an object associated with less as opposed to more hierarchy, whereas conservatives do not exhibit such a preference (Study 1). We also find that liberals are more persuaded by persuasive appeals that endorse equality rather than hierarchy, whereas conservatives are less sensitive to this distinction (Study 2). Finally, we identify the moderating role of political identity salience: When one’s political identity is made salient, liberals show an increased preference for messages highlighting equality, whereas conservatives become more persuaded by messages highlighting hierarchy (Study 3)

    Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism

    No full text
    Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events

    A Bis(2-fluoroethyl) Carbonate as a New Electrolyte Additive for Enhancing the Long-Term Cycle Performance of Li-Metal Batteries

    No full text
    To meet the demand for high energy density, Li metal is considered a next-generation anode material owing to its high theoretical specific capacity and low electrode potential. However, conventional LiPF6-based electrolytes form a thick and porous solid electrolyte interphase (SEI) on Li metal, resulting in poor cycle performance. One of attempts to resolve these is to optimize the electrolyte composition because the Li metal reacts most actively with electrolyte. Here, bis(2-fluoroethyl) carbonate (B-FC), as a new fluorine-based linear carbonate, was added to a LiTFSI-LiBOB-based dual-salt electrolyte. To confirm the effect of B-FC on the electrochemical properties, Li || Li symmetric cells and LiNi0.6Co0.2Mn0.2O2 (NMC622) || Li metal full cells with or without B-FC were evaluated. The addition of B-FC forms LiF-rich SEI and significantly reduced Li dendrite growth, leading to the thin dead Li layer formation. Furthermore, high-voltage performances of NMC622 || Li metal full cells with B-FC were effectively improved compared to the pure DSL (capacity retention of 73.1% vs 62.4% after 300 cycles and a capacity of 117 mAh g−1 vs 87 mAh g−1 at 21 mA cm−2). Consequently, herein, we demonstrated that the dual-salts with B-FC can stabilize the SEI even under the 4.5 V cut-off condition. © 2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited.FALS

    Enriching plausible new hypothesis generation in PubMed

    No full text
    <div><p>Background</p><p>Most of earlier studies in the field of literature-based discovery have adopted Swanson's ABC model that links pieces of knowledge entailed in disjoint literatures. However, the issue concerning their practicability remains to be solved since most of them did not deal with the context surrounding the discovered associations and usually not accompanied with clinical confirmation. In this study, we aim to propose a method that expands and elaborates the existing hypothesis by advanced text mining techniques for capturing contexts. We extend ABC model to allow for multiple B terms with various biological types.</p><p>Results</p><p>We were able to concretize a specific, metabolite-related hypothesis with abundant contextual information by using the proposed method. Starting from explaining the relationship between lactosylceramide and arterial stiffness, the hypothesis was extended to suggest a potential pathway consisting of lactosylceramide, nitric oxide, malondialdehyde, and arterial stiffness. The experiment by domain experts showed that it is clinically valid.</p><p>Conclusions</p><p>The proposed method is designed to provide plausible candidates of the concretized hypothesis, which are based on extracted heterogeneous entities and detailed relation information, along with a reliable ranking criterion. Statistical tests collaboratively conducted with biomedical experts provide the validity and practical usefulness of the method unlike previous studies. Applying the proposed method to other cases, it would be helpful for biologists to support the existing hypothesis and easily expect the logical process within it.</p></div

    Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Get PDF
    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin orderingpattern of Cr31 ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements,and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system. (c)2014, Nature Publishing Group. All rights reserved.118161sciescopu
    corecore