81,610 research outputs found

    Stokes Parameters as a Minkowskian Four-vector

    Get PDF
    It is noted that the Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. It is shown that the four independent Stokes parameters form a Minkowskian four-vector, just like the energy-momentum four-vector in special relativity. The optical filters are represented by four-by-four Lorentz-transformation matrices. This four-by-four formalism can deal with partial coherence described by the Stokes parameters. A four-by-four matrix formulation is given for decoherence effects on the Stokes parameters, and a possible experiment is proposed. It is shown also that this Lorentz-group formalism leads to optical filters with a symmetry property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.

    Generation of GHZ entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction

    Full text link
    We propose an efficient method to generate a GHZ entangled state of n photons in n microwave cavities (or resonators) via resonant interaction to a single superconducting qutrit. The deployment of a qutrit, instead of a qubit, as the coupler enables us to use resonant interactions exclusively for all qutrit-cavity and qutrit-pulse operations. This unique approach significantly shortens the time of operation which is advantageous to reducing the adverse effects of qutrit decoherence and cavity decay on fidelity of the protocol. Furthermore, the protocol involves no measurement on either the state of qutrit or cavity photons. We also show that the protocol can be generalized to other systems by replacing the superconducting qutrit coupler with different types of physical qutrit, such as an atom in the case of cavity QED, to accomplish the same task.Comment: 11 pages, 5 figures, accepted by Phys. Rev.

    Objective analysis of observational data from the FGGE observing systems

    Get PDF
    An objective analysis procedure for updating the GLAS second and fourth order general atmospheric circulation models using observational data from the first GARP global experiment is described. The objective analysis procedure is based on a successive corrections method and the model is updated in a data assimilation cycle. Preparation of the observational data for analysis and the objective analysis scheme are described. The organization of the program and description of the required data sets are presented. The program logic and detailed descriptions of each subroutine are given

    Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding

    Get PDF
    A study investigating the effect of sheet surface condition on resistance spot welding (RSW) of aluminium has been carried out. This concentrates on two automotive aluminium alloys; AA5754 and AA6111, used for structural and closure applications respectively. The results show the marked effect that surface condition can have on the RSW process. For AA5754 sheet incomplete removal of a ‘disrupted surface layer’ prior to surface pretreatment is shown to have a detrimental effect on the RSW process. The solid wax lubricant used to assist metal forming leads to unpredictable changes in contact resistance, and consequently affects the process stability. For AA6111 closures the final surface topography can influence the RSW process. Standard ‘mill’ and electro-discharge textured (EDT) finish sheet surfaces were examined and preliminary results suggest that both are suitable for welding. The successful application of RSW of aluminium sheet requires careful consideration of the sheet surface condition. This requires close collaboration between material suppliers and automotive manufacturers

    Detection of an exoplanet around the evolved K giant HD 66141

    Full text link
    Aims. We have been carrying out a precise radial velocity (RV) survey for K giants to search for and study the origin of the lowamplitude and long-periodic RV variations. Methods. We present high-resolution RV measurements of the K2 giant HD 66141 from December 2003 to January 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We find that the RV measurements for HD 66141 exhibit a periodic variation of 480.5 +/- 0.5 days with a semi-amplitude of 146.2 +/- 2.7 m/s. The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. We find indeed 706.4 +/- 35.0 day variations in equivalent width (EW) measurements of H_alpha line and 703.0 +/- 39.4 day variations in a space-born measurements 1.25{\mu} flux of HD 66141 measured during COBE/DIRBE experiment. We reveal that a mean value of long-period variations is about 705 +/- 53 days and the origin is a rotation period of the star and variability that is caused by surface inhomogeneities. For the 480 day periods of RV variations an orbital motion is the most likely explanation. Assuming a stellar mass of 1.1 +/- 0.1 M_Sun? for HD 66141, we obtain a minimum mass for the planetary companion of 6.0 +/- 0.3 M_Jup with an orbital semi-major axis of 1.2 +/- 0.1 AU and an eccentricity of 0.07 +/- 0.03.Comment: 7 pages, 10 figures, 3 tables, accepted for publisation in Astronomy & Astrophysic

    Optimizing the Post Sandvik Nanoflex material model using inverse optimization and the finite element method

    Get PDF
    This article describes an inverse optimization method for the Sandvik Nanoflex steel in cold forming\ud processes. The optimization revolves around measured samples and calculations using the Finite Element\ud Method. Sandvik Nanoflex is part of the group of meta-stable stainless steels. These materials are characterized\ud by a good corrosion resistance, high strength, good formability and crack resistance. In addition, Sandvik\ud Nanoflex has a strain-induced transformation and, depending on austenising conditions and chemical composition,\ud a stress-assisted transformation can occur. The martensite phase of this material shows a substantial aging\ud response. The inverse optimization is a sub-category of the optimization techniques. The inverse optimization\ud method uses a top down approach, as the name implies. The starting point is a prototype state where the current\ud state is to converge on. In our experiment the test specimen is used as prototype and a calculation result as\ud current state. The calculation is then adapted so that the result converges towards the test example. An iterative\ud numerical optimization algorithm controls the adaptation. For the inverse optimization method two parameters\ud are defined: shape of the product and martensite profile. These parameters are extracted from both calculation\ud and test specimen, using Fourier analysis and integrals. An optimization parameter is then formulated from\ud the extracted parameters. The method uses this optimization parameter to increase the accuracy of ”The Post”\ud material model for Sandvik Nanoflex. [1] The article will describe a method to optimize material models, using\ud a combination practical experiments, Finite Element Method and parameter extraction
    • 

    corecore