33 research outputs found

    Characterizing Acupuncture Stimuli Using Brain Imaging with fMRI - A Systematic Review and Meta-Analysis of the Literature

    Get PDF
    Background The mechanisms of action underlying acupuncture, including acupuncture point specificity, are not well understood. In the previous decade, an increasing number of studies have applied fMRI to investigate brain response to acupuncture stimulation. Our aim was to provide a systematic overview of acupuncture fMRI research considering the following aspects: 1) differences between verum and sham acupuncture, 2) differences due to various methods of acupuncture manipulation, 3) differences between patients and healthy volunteers, 4) differences between different acupuncture points. Methodology/Principal Findings We systematically searched English, Chinese, Korean and Japanese databases for literature published from the earliest available up until September 2009, without any language restrictions. We included all studies using fMRI to investigate the effect of acupuncture on the human brain (at least one group that received needle-based acupuncture). 779 papers were identified, 149 met the inclusion criteria for the descriptive analysis, and 34 were eligible for the meta-analyses. From a descriptive perspective, multiple studies reported that acupuncture modulates activity within specific brain areas, including somatosensory cortices, limbic system, basal ganglia, brain stem, and cerebellum. Meta-analyses for verum acupuncture stimuli confirmed brain activity within many of the regions mentioned above. Differences between verum and sham acupuncture were noted in brain response in middle cingulate, while some heterogeneity was noted for other regions depending on how such meta-analyses were performed, such as sensorimotor cortices, limbic regions, and cerebellum. Conclusions Brain response to acupuncture stimuli encompasses a broad network of regions consistent with not just somatosensory, but also affective and cognitive processing. While the results were heterogeneous, from a descriptive perspective most studies suggest that acupuncture can modulate the activity within specific brain areas, and the evidence based on meta-analyses confirmed some of these results. More high quality studies with more transparent methodology are needed to improve the consistency amongst different studies

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    Overview of KSTAR research progress and future plans toward ITER and K-DEMO

    No full text
    A decade-long operation of the Korean Superconducting Tokamak Advanced Research (KSTAR) has contributed significantly to the operation of superconducting tokamak devices and the advancement of tokamak physics which will be beneficial for the ITER and K-DEMO programs. Even with limited heating capability, various conventional as well as new operating regimes have been explored and have achieved improved performance. As examples, a long pulse high-confinement mode operation with and without an edge-localized mode (ELM) crash was well over 70 and 30s, respectively. The unique capabilities of KSTAR allowed it to improve the capability of controlling harmful instabilities, and they have been instrumental in uncovering much new physics. The highlights are that the L/H transition threshold power is sensitive to the resonant magnetic perturbation (RMP) and insensitive to non-resonant magnetic perturbation. Co-I-p offset rotation dominated by an electron channel predicted by general neoclassical toroidal viscosity theory was confirmed. Improved heat dispersal in a divertor system using three rows of rotating RMP was demonstrated and predictive control of the ELM-crash with a priori modeling was successfully tested. In magnetohydrodynamic physics, validation of the full reconnection model (i.e. q(0) > 1 right after the sawtooth crash) and self-consistent validation of the anisotropic distribution of turbulence amplitude and flow in the presence of the 2 / 1 island with theoretical models were achieved. The turbulence amplitude induced by RMP was linearly increased with the slow RMP coil current ramp-up time (i.e. the magnetic diffusion time scale). The D-alpha, spikes (i.e. ELM-crash amplitude) was linearly decreased with the turbulence amplitude and not correlated with the perpendicular electron flow. In the turbulence area, a non-diffusive 'avalanche' transport event and the role of a quiescent coherent mode in confinement were studied. To accommodate the anticipation of a higher performance of the KSTAR plasmas with the increased heating powers, a new divertor/internal interface with a full active cooling system will be implemented after a full test of the new heating (neutral beam injection II and electron cyclotron heating) and current drive (CD) (Helicon and lower hybrid CD) systems. An upgrade plan for the internal hardware, heating systems and efficient CD system may allow for a long pulse operation of higher performance plasmas at beta(N) > 3.0 with f(b)(s) similar to 0.5 and 7(i) > 10 keV

    Overview of KSTAR initial operation

    No full text
    Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation
    corecore