1,351 research outputs found
New Signal for Universal Extra Dimensions
In the universal extra dimensions (UED) scenario, the tree level masses of
the first level Kaluza-Klein (KK) excitations of Standard Model particles are
essentially degenerate. Radiative corrections will, however, lift this
degeneracy, allowing the first level excitations to decay to the lightest KK
particle (LKP), which is the gamma^*. KK number conservation implies that the
LKP is stable. Then, since the SM particles radiated during these decays are
rather soft, the observation of KK excitations production and decay in collider
experiments will be quite difficult. We propose to add to this model KK number
violating interactions mediated by gravity, which allow the gamma^* to decay to
a photon and a KK graviton. For a variety a models and a large range of
parameters, these decays will occur within the detector. Thus, pair production
of KK excitations will give rise to a striking collider signal, consisting of
two hard photons plus large missing energy (due to escaping gravitons). We
evaluate the cross-section for these signals at the Tevatron and LHC, and
derive the reach of these colliders in the search for universal extra
dimensions.Comment: 11 pages, 6 eps figures. One reference and minor comments adde
Gauge coupling unification with large extra dimensions
We make a detailed study of the unification of gauge couplings in the MSSM
with large extra dimensions. We find some scenarios where unification can be
achieved (with the strong coupling constant at the Z mass within one standard
deviation of the experimental value) with both the compactification scale and
the SUSY breaking scale in the few TeV range. No enlargement of the gauge group
or particle content is needed. One particularly interesting scenario is when
the SUSY breaking scale is larger than the compactification scale, but both are
small enough to be probed at the CERN LHC. Unification in two scales scenarios
is also investigated and found to give results within the LHC.Comment: 17 pages, 3 figures, some discussions added, few additional
references included. Version to appear in Phys. Rev.
Adjoint bulk scalars and supersymmetric unification in the presence of extra dimensions
There are several advantages of introducing adjoint superfields at
intermediate energies around GeV. Such as (i) gauge couplings still
unify (ii) neutrino masses and mixings are produced (iii) primordial lepton
asymmetry can be produced. We point out that if adjoint scalars have bulk
excitations along with gauge bosons whereas fermions and the doublet scalar
live on boundary then N=2 supersymmetric beta functions vanish.
Thus even if extra dimensions open up at an intermediate scale and all
N=2 Yang-Mills fields as well as N=2 matter fields in the adjoint
representation propagate in the bulk, still gauge couplings renormalize beyond
just like they do in 4-dimensions with adjoint scalars. Consequently
unification is achieved in the presence to extra dimensions, mass scales are
determined uniquely via Renormalization Group Equations(RGE) and unification
scale remains high enough to suppress proton decay. This scenario can be
falsified if we get signatures of extra dimensions at low energy.Comment: New references added. This version will appear in Phys. Rev.
Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders
We analyze the potentiality of the new generation of linear
colliders to search for large extra dimensions via the production of fermion
pairs in association with Kaluza-Klein gravitons (G), i.e. . This process leads to a final state exhibiting a significant amount
of missing energy in addition to acoplanar lepton or jet pairs. We study in
detail this reaction using full tree level contibutions due to the graviton
emission and the standard model backgrounds. After choosing the cuts to enhance
the signal, we show that a linear collider with a center-of-mass energy of 500
GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3)
TeV at 2(5) level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was
extended. No changes in the results. Accepted for publication by Phys. Rev.
FCNC Top Quark Decays in Extra Dimensions
The flavor changing neutral top quark decay t -> c X is computed, where X is
a neutral standard model particle, in a extended model with a single extra
dimension. The cases for the photon, X= \gammaR_\xi gauge. We find that
the branching ratios can be enhanced by the dynamics originated in the extra
dimension. In the limit where 1/R >> ->, we have found Br(t -> c \gamma) \simeq
10^{-10} for 1/R = 0.5 TeV. For the decay t -> c H, we have found Br(t -> cH)
\simeq 10^{-10} for a low Higgs mass value. The branching ratios go to zero
when 1/R -> \infty.Comment: Accepted to be published in the Europ. Phys. Jour. C; 16 pages, 2
figure
Cosmological bounds on large extra dimensions from non-thermal production of Kaluza-Klein modes
The existing cosmological constraints on theories with large extra dimensions
rely on the thermal production of the Kaluza-Klein modes of gravitons and
radions in the early Universe. Successful inflation and reheating, as well as
baryogenesis, typically requires the existence of a TeV-scale field in the
bulk, most notably the inflaton. The non-thermal production of KK modes with
masses of order 100 GeV accompanying the inflaton decay sets the lower bounds
on the fundamental scale M_*. For a 1 TeV inflaton, the late decay of these
modes distort the successful predictions of Big Bang Nucleosynthesis unless
M_*> 35, 13, 7, 5 and 3 TeV for 2, 3, 4, 5 and 6 extra dimensions,
respectively. This improves the existing bounds from cosmology on M_* for 4, 5
and 6 extra dimensions. Even more stringent bounds are derived for a heavier
inflaton.Comment: 17 pages, latex, 4 figure
Testing the Nature of Kaluza-Klein Excitations at Future Lepton Colliders
With one extra dimension, current high precision electroweak data constrain
the masses of the first Kaluza-Klein excitations of the Standard Model gauge
fields to lie above TeV. States with masses not much larger than
this should be observable at the LHC. However, even for first excitation masses
close to this lower bound, the second set of excitations will be too heavy to
be produced thus eliminating the possibility of realizing the cleanest
signature for KK scenarios. Previous studies of heavy and production
in this mass range at the LHC have demonstrated that very little information
can be obtained about their couplings to the conventional fermions given the
limited available statistics and imply that the LHC cannot distinguish an
ordinary from the degenerate pair of the first KK excitations of the
and . In this paper we discuss the capability of lepton colliders
with center of mass energies significantly below the excitation mass to resolve
this ambiguity. In addition, we examine how direct measurements obtained on and
near the top of the first excitation peak at lepton colliders can confirm these
results. For more than one extra dimension we demonstrate that it is likely
that the first KK excitation is too massive to be produced at the LHC.Comment: 38 pages, 10 Figs, LaTex, comments adde
Large Extra Dimensions and Decaying KK Recurrences
We suggest the possibility that in ADD type brane-world scenarios, the higher
KK excitations of the graviton may decay to lower ones owing to a breakdown of
the conservation of extra dimensional ``momenta'' and study its implications
for astrophysics and cosmology. We give an explicit realization of this idea
with a bulk scalar field , whose nonzero KK modes acquire vacuum
expectation values. This scenario helps to avoid constraints on large extra
dimensions that come from gamma ray flux bounds in the direction of nearby
supernovae as well as those coming from diffuse cosmological gamma ray
background. It also relaxes the very stringent limits on reheat temperature of
the universe in ADD models.Comment: 16 pages, late
Mass matrix Ansatz and lepton flavor violation in the THDM-III
Predictive Higgs-fermion couplings can be obtained when a specific texture
for the fermion mass matrices is included in the general two-Higgs doublet
model. We derive the form of these couplings in the charged lepton sector using
a Hermitian mass matrix Ansatz with four-texture zeros. The presence of
unconstrained phases in the vertices phi-li-lj modifies the pattern of
flavor-violating Higgs interactions. Bounds on the model parameters are
obtained from present limits on rare lepton flavor violating processes, which
could be extended further by the search for the decay tau -> mu mu mu and mu-e
conversion at future experiments. The signal from Higgs boson decays phi -> tau
mu could be searched at the large hadron collider (LHC), while e-mu transitions
could produce a detectable signal at a future e mu-collider, through the
reaction e mu -> h0 -> tau tau.Comment: 17 pages, 9 figure
Standard Model baryogenesis through four-fermion operators in braneworlds
We study a new baryogenesis scenario in a class of braneworld models with low
fundamental scale, which typically have difficulty with baryogenesis. The
scenario is characterized by its minimal nature: the field content is that of
the Standard Model and all interactions consistent with the gauge symmetry are
admitted. Baryon number is violated via a dimension-6 proton decay operator,
suppressed today by the mechanism of quark-lepton separation in extra
dimensions; we assume that this operator was unsuppressed in the early Universe
due to a time-dependent quark-lepton separation. The source of CP violation is
the CKM matrix, in combination with the dimension-6 operators. We find that
almost independently of cosmology, sufficient baryogenesis is nearly impossible
in such a scenario if the fundamental scale is above 100 TeV, as required by an
unsuppressed neutron-antineutron oscillation operator. The only exception
producing sufficient baryon asymmetry is a scenario involving
out-of-equilibrium c quarks interacting with equilibrium b quarks.Comment: 39 pages, 5 figures v2: typos, presentational changes, references and
acknowledgments adde
- …