2,014 research outputs found

    A computational study of photoisomerization in Al3O3- ­clusters

    Get PDF
    Ab initio calculations are employed to understand the photoisomerization process in small Al3O3- clusters. This process is the first example of a photoinduced isomerization observed in an anion cluster gas-phase system. Potential energy surfaces for the ground state and the excited state (S1 and T1) are explored by means of B3LYP, MP2, CI-singles, and CASSCF methods. We demonstrate that the isomerization process occurs between the global minimum singlet state Book structure (C2v,1A1) and the triplet state Ring structure (C2v,3B2). The calculated vertical excitation energy is 3.62 eV at the CASSCF level of approximation, in good agreement with the experimental value (3.49 eV). A nonplanar conical intersection, which hosts the intersystem crossing between the S1 and T1 surfaces is identified at the region of around R(1,6)=2.4 Å. Beyond the experimental results, we predict, that this isomerization is reversible upon absorption of a phonon with energy of 1.92 eV. Our results describe a unique system, whose structure depends on its spin multiplicity; it exists as the Book structure on singlet states and as the Ring structure on triplet states

    Annealing study of A1/GaSb contact with the use of doppler broadening technique

    Get PDF
    Using a monoenergetic positron beam, annealing study of the Al/n-GaSb system was performed by monitoring the Doppler broadening of the annihilation radiation as a function of the positron implanting energy. The S-parameter against positron energy data was successfully fitted by a three-layer model (Al/interface/GaSb). The annealing out of the open volume defects in the polycrystalline Al layer was revealed by the decrease in the S-parameter and the increase in the effective diffusion length of the Al layer. For the as-deposited samples, a∼5 nm interfacial region with S-parameter larger than those of the Al overlayer and the bulk was identified. After the 400^ºC annealing, this interfacial region extends to over 40 nm and its S-parameter dramatically drops. This is possibly due to the new phase formation at the interface. Annealing behaviors of SB and L+,B of the GaSb bulk showed the annealing out of positron traps (possibly the VGa-related defect) at 250ºC. However, a further annealing at 400ºC induces the formation of positron traps, which are possibly of another kind of VGa-related defect and the positron shallow trap GaSb antisite.published_or_final_versionProceedings of the 35th Polish Seminar on Positron Annihilation (PSPA), Turawa, Poland, 20-24 September 2004. In Acta Physica Polonica Series A: General Physics, Physics of Condensed Matter, Optics and Quantum Electronics, Atomic and Molecular Physics, Applied Physics, 2005, v. 107 n. 5, p. 874-87

    Superconductivity in iron telluride thin films under tensile stress

    Full text link
    By realizing in thin films a tensile stress state, superconductivity of 13 K was introduced into FeTe, an non-superconducting parent compound of the iron pnictides and chalcogenides, with transition temperature higher than that of its superconducting isostructural counterpart FeSe. For these tensile stressed films, the superconductivity is accompanied by the softening of the first-order magnetic and structural phase transition; and also, the in-plane extension and out-of-plane contraction are universal in all FeTe films independent of sign of lattice mismatch, either positive or negative. Moreover, the correlations were found exist between the transition temperatures and the tetrahedra bond angles in these thin films.Comment: 4 pages, 4 figures, accepted by Physical Review Letter

    Self assembled monolayer films of C-60 on O,O'-bis(2-aminoethyl)dithiophosphate modified copper

    Get PDF
    On the surface of O,O'-bis(2-aminoethyl) dithiophosphate modified copper C-60 forms self-assembled monolayer films (SAMs) through the chemical bond The film was characterized by contact angle, X-ray photoelectron spectroscopy, electrochemistry, TOF Mass Spectropy

    Improving "color rendering" of LED lighting for the growth of lettuce

    Get PDF
    Light plays a vital role on the growth and development of plant. On the base of white light with high color rendering to the benefit of human survival and life, we proposed to improve “color rendering” of LED lighting for accelerating the growth of lettuce. Seven spectral LED lights were adopted to irradiate the lettuces under 150 μmol·m−2·s−1 for a 16 hd−1 photoperiod. The leaf area and number profiles, plant biomass, and photosynthetic rate under the as-prepared LED light treatments were investigated. We let the absorption spectrum of fresh leaf be the emission spectrum of ideal light and then evaluate the “color rendering” of as-prepared LED lights by the Pearson product-moment correlation coefficient and CIE chromaticity coordinates. Under the irradiation of red-yellow-blue light with high correlation coefficient of 0.587, the dry weights and leaf growth rate are 2-3 times as high as the sharp red-blue light. The optimized LED light for lettuce growth can be presumed to be limited to the angle (about 75°) between the vectors passed through the ideal light in the CIE chromaticity coordinates. These findings open up a new idea to assess and find the optimized LED light for plant growth

    First isolation of two colistin-resistant emerging pathogens, Brevundimonas diminuta and Ochrobactrum anthropi, in a woman with cystic fibrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cystic fibrosis afflicted lungs support the growth of many bacteria rarely implicated in other cases of human infections.</p> <p>Case presentation</p> <p>We report the isolation and identification, by 16S rRNA amplification and sequencing, of two emerging pathogens resistant to colistin, <it>Brevundimonas diminuta </it>and <it>Ochrobactrum anthropi</it>, in a 17-year-old woman with cystic fibrosis and pneumonia. The patient eventually responded well to a 2-week regime of imipenem and tobramycin.</p> <p>Conclusion</p> <p>Our results clearly re-emphasize the emergence of new colistin-resistant pathogens in patients with cystic fibrosis.</p

    High-Temperature Stable Operation of Nanoribbon Field-Effect Transistors

    Get PDF
    We experimentally demonstrated that nanoribbon field-effect transistors can be used for stable high-temperature applications. The on-current level of the nanoribbon FETs decreases at elevated temperatures due to the degradation of the electron mobility. We propose two methods of compensating for the variation of the current level with the temperature in the range of 25–150°C, involving the application of a suitable (1) positive or (2) negative substrate bias. These two methods were compared by two-dimensional numerical simulations. Although both approaches show constant on-state current saturation characteristics over the proposed temperature range, the latter shows an improvement in the off-state control of up to five orders of magnitude (−5.2 × 10−6)

    A Novel Strategy to Screen Bacillus Calmette-Guérin Protein Antigen Recognized by γδ TCR

    Get PDF
    BACKGROUND: Phosphoantigen was originally identified as the main γδ TCR-recognized antigen that could activate γδ T cells to promote immune protection against mycobacterial infection. However, new evidence shows that the γδ T cells activated by phosphoantigen can only provide partial immune protection against mycobacterial infection. In contrast, whole lysates of Mycobacterium could activate immune protection more potently, implying that other γδ TCR-recognized antigens that elicit protective immune responses. To date, only a few distinct mycobacterial antigens recognized by the γδ TCR have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we established a new approach to screen epitopes or protein antigens recognized by the γδ TCR using Bacillus Calmette-Guérin- (BCG-) specific γ TCR transfected cells as probes to pan a 12-mer random-peptide phage-displayed library. Through binding assays and functional analysis, we identified a peptide (BP3) that not only binds to the BCG-specific γδ TCR but also effectively activates γδ T cells isolated from human subjects inoculated with BCG. Importantly, the γδ T cells activated by peptide BP3 had a cytotoxic effect on THP-1 cells infected with BCG. Moreover, the oxidative stress response regulatory protein (OXYS), a BCG protein that matches perfectly with peptide BP3 according to bioinformatics analysis, was confirmed as a ligand for the γδ TCR and was found to activate γδ T cells from human subjects inoculated with BCG. CONCLUSIONS/SIGNIFICANCE: In conclusion, our study provides a novel strategy to identify epitopes or protein antigens for the γδ TCR, and provides a potential means to screen mycobacterial vaccines or candidates for adjuvant
    corecore