8,505 research outputs found
Simple trace criterion for classification of multilayers
The action of any lossless multilayer is described by a transfer matrix that
can be factorized in terms of three basic matrices. We introduce a simple trace
criterion that classifies multilayers in three classes with properties closely
related with one (and only one) of these three basic matrices.Comment: To be published in Optics Letter
Microstructural and Isotopic Constraints on WL Rim Formation
Coordinated microanalyses of Wark-Lovering (WL) rims are needed to best understand their origin and to decipher their subsequent evolution both in the nebular and parent body settings. Here we present the mineralogy, petrology, microstructures, O isotopic compositions, and Al-Mg systematics of a WL rim on a Type B CAI, Big Guy, from the reduced CV3 chondrite Vigarano [1]. Our SEM and TEM study reveals seven distinct mineral layers in the WL rim that include: (1) gehlenite with rare grossite, (2) hibonite, (3) spinel with minor hibonite and perovskite, (4) zoned melilite (k(sub ~0-10)), (5) anorthite, (6) zoned diopside grading outwards from Al,Ti-rich to Al,Tipoor, and (7) forsterite intergrown with diopside. We infer a two-stage history in which WL rim formation was initiated by flash melting and extensive evaporation of the original inclusion edge, followed by subsequent condensation under highly dynamic conditions. The outermost edge of the CAI mantle is mineralogically and texturally distinct compared to the underlying mantle that is composed of coarse, zoned melilite (k(sub ~10-60)) grains. The mantle edge contains finegrained gehlenite with hibonite and rare grossite that likely formed by rapid crystallization from a Ca,Al-rich melt produced during a flash vaporization event [2]. These gehlenite and hibonite layers are surrounded by successive layers of spinel, melilite, diopside, and forsterite, indicating their sequential gas-solid reactions onto hibonite. Anorthite occurs as a discontinuous layer that corrodes adjacent melilite and Al-diopside, and appears to have replaced them [3,4], probably even later than the forsterite layer formation. All the WL rim minerals analyzed using the JSC NanoSIMS 50L are 16O-rich (17O 23), indicating their formation in an 16O-rich gas reservoir. Our data are in contrast with many CV CAIs that show heterogeneous 17O values across their WL rims [5]. Our Al-Mg data obtained using the UCLA ims-1290 ion microprobe of the CAI interior and the WL rim define a well-correlated isochron with (26Al/27Al)(sub 0) = 4.94 10(exp 5), indicating their synchronous formation 5 10(exp 4) years after the canonical CAI value. In contrast, no 26Mg excesses are observed in the WL rim anorthite, which suggests its later formation or later isotopic resetting in an 16O-rich gas reservoir, after 26Al had decayed
Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the G{alpha}q/11 pathway
MrgA1 and MrgC11 belong to a recently identified family of orphan G-protein coupled receptors, called mrgs (mas-related genes). They are only expressed in a specific subset of sensory neurons that are known to detect painful stimuli. However, the precise physiological function of Mrg receptors and their underlying mechanisms of signal transduction are not known. We therefore have screened a series of neuropeptides against human embryonic kidney (HEK) 293 cells that stably express either MrgA1 or MrgC11 to identify ligands and/or agonists. MrgA1- or MrgC11-specific agonists stimulated dose-dependent increases in intracellular free Ca2+ in a pertussis toxin-insensitive manner, but failed to alter basal or forskolin-stimulated levels of intracellular cAMP. Furthermore, studies using embryonic fibroblasts derived from various G{alpha} protein knockout mice demonstrated that both the MrgA1 and MrgC11 receptors are coupled to the G{alpha}q/11 signaling pathway. Screening of neuropeptides identified surrogate agonists, most of these peptides included a common C-terminal -RF(Y)G or -RF(Y) amide motif. Structure-function studies suggest that endogenous ligands of Mrg receptors are likely to be RF(Y)G and/or RF(Y) amide-related peptides and that postprocessing of these peptides may serve to determine Mrg receptor-ligand specificity. The differences in ligand specificity also suggest functional diversity amongst the Mrg receptors
Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies
Using a series of high-resolution hydrodynamical simulations we show that
during the rapid growth of high-redshift (z > 5) galaxies, reserves of
molecular gas are consumed over a time-scale of 300Myr, almost independent of
feedback scheme. We find that there exists no such simple relation for the
total gas fractions of these galaxies, with little correlation between gas
fractions and specific star formation rates. The bottleneck or limiting factor
in the growth of early galaxies is in converting infalling gas to cold
star-forming gas. Thus, we find that the majority of high redshift dwarf
galaxies are effectively in recession, with demand (of star formation) never
rising to meet supply (of gas), irrespective of the baryonic feedback physics
modelled. We conclude that the basic assumption of self-regulation in galaxies
- that they can adjust total gas consumption within a Hubble time - does not
apply for the dwarf galaxies thought to be responsible for providing most UV
photons to reionize the high redshift Universe. We demonstrate how this rapid
molecular time-scale improves agreement between semi-analytic model predictions
of the early Universe and observed stellar mass functions.Comment: 17 pages, 27 figures, accepted for publication in MNRAS, minor
updates to align with final published versio
Automatic cell segmentation by adaptive thresholding (ACSAT) for large-scale calcium imaging datasets
Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An emerging technical challenge that parallels the advancement in imaging a large number of individual neurons is the processing of correspondingly large datasets. One important step is the identification of individual neurons. Traditional methods rely mainly on manual or semimanual inspection, which cannot be scaled for processing large datasets. To address this challenge, we focused on developing an automated segmentation method, which we refer to as automated cell segmentation by adaptive thresholding (ACSAT). ACSAT works with a time-collapsed image and includes an iterative procedure that automatically calculates global and local threshold values during successive iterations based on the distribution of image pixel intensities. Thus, the algorithm is capable of handling variations in morphological details and in fluorescence intensities in different calcium imaging datasets. In this paper, we demonstrate the utility of ACSAT by testing it on 500 simulated datasets, two wide-field hippocampus datasets, a wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon hippocampus dataset. For the simulated datasets with truth, ACSAT achieved >80% recall and precision when the signal-to-noise ratio was no less than ∼24 dB.DP2 NS082126 - NINDS NIH HHSPublished versio
Iwasawa Effects in Multi-layer Optics
There are many two-by-two matrices in layer optics. It is shown that they can
be formulated in terms of a three-parameter group whose algebraic property is
the same as the group of Lorentz transformations in a space with two space-like
and one time-like dimensions, or the group which is a standard
theoretical tool in optics. Among the interesting mathematical properties of
this group, the Iwasawa decomposition drastically simplifies the matrix algebra
under certain conditions, and leads to a concise expression for the S-matrix
for transmitted and reflected rays. It is shown that the Iwasawa effect can be
observed in multi-layer optics, and a sample calculation of the S-matrix is
given.Comment: RevTex 10 pages including 1 psfi
Transverse multi-mode effects on the performance of photon-photon gates
The multi-mode character of quantum fields imposes constraints on the
implementation of high-fidelity quantum gates between individual photons. So
far this has only been studied for the longitudinal degree of freedom. Here we
show that effects due to the transverse degrees of freedom significantly affect
quantum gate performance. We also discuss potential solutions, in particular
separating the two photons in the transverse direction.Comment: 5 pages, 3 figures, published versio
Review of pyronaridine anti-malarial properties and product characteristics.
Pyronaridine was synthesized in 1970 at the Institute of Chinese Parasitic Disease and has been used in China for over 30 years for the treatment of malaria. Pyronaridine has high potency against Plasmodium falciparum, including chloroquine-resistant strains. Studies in various animal models have shown pyronaridine to be effective against strains resistant to other anti-malarials, including chloroquine. Resistance to pyronaridine appears to emerge slowly and is further retarded when pyronaridine is used in combination with other anti-malarials, in particular, artesunate. Pyronaridine toxicity is generally less than that of chloroquine, though evidence of embryotoxicity in rodents suggests use with caution in pregnancy. Clinical pharmacokinetic data for pyronaridine indicates an elimination T1/2 of 13.2 and 9.6 days, respectively, in adults and children with acute uncomplicated falciparum and vivax malaria in artemisinin-combination therapy. Clinical data for mono or combined pyronaridine therapy show excellent anti-malarial effects against P. falciparum and studies of combination therapy also show promise against Plasmodium vivax. Pyronaridine has been developed as a fixed dose combination therapy, in a 3:1 ratio, with artesunate for the treatment of acute uncomplicated P. falciparum malaria and blood stage P. vivax malaria with the name of Pyramax® and has received Positive Opinion by European Medicines Agency under the Article 58 procedure
Inductive reasoning in humans and large language models
The impressive recent performance of large language models has led many to
wonder to what extent they can serve as models of general intelligence or are
similar to human cognition. We address this issue by applying GPT-3.5 and GPT-4
to a classic problem in human inductive reasoning known as property induction.
Over two experiments, we elicit human judgments on a range of property
induction tasks spanning multiple domains. Although GPT-3.5 struggles to
capture many aspects of human behaviour, GPT-4 is much more successful: for the
most part, its performance qualitatively matches that of humans, and the only
notable exception is its failure to capture the phenomenon of premise
non-monotonicity. Our work demonstrates that property induction allows for
interesting comparisons between human and machine intelligence and provides two
large datasets that can serve as benchmarks for future work in this vein.Comment: 61 pages, 5 figure
The Big Occulting Steerable Satellite (BOSS)
Natural (such as lunar) occultations have long been used to study sources on
small angular scales, while coronographs have been used to study high contrast
sources. We propose launching the Big Occulting Steerable Satellite (BOSS), a
large steerable occulting satellite to combine both of these techniques. BOSS
will have several advantages over standard occulting bodies. BOSS would block
all but about 4e-5 of the light at 1 micron in the region of interest around
the star for planet detections. Because the occultation occurs outside the
telescope, scattering inside the telescope does not degrade this performance.
BOSS could be combined with a space telescope at the Earth-Sun L2 point to
yield very long integration times, in excess of 3000 seconds. If placed in
Earth orbit, integration times of 160--1600 seconds can be achieved from most
major telescope sites for objects in over 90% of the sky. Applications for BOSS
include direct imaging of planets around nearby stars. Planets separated by as
little as 0.1--0.25 arcseconds from the star they orbit could be seen down to a
relative intensity as little as 1e-9 around a magnitude 8 (or brighter) star.
Other applications include ultra-high resolution imaging of compound sources,
such as microlensed stars and quasars, down to a resolution as little as 0.1
milliarcseconds.Comment: 25pages, 4 figures, uses aaspp4, rotate, and epsfig. Submitted to the
Astrophysical Journal. For more details see
http://erebus.phys.cwru.edu/~boss
- …