2,663 research outputs found

    Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices

    Get PDF
    AbstractThis feature article presents a short review of the recent developments in the synthesis of conjugated polyelectrolytes (CPEs) along with their applications in organic optoelectronic devices with particular focus on the molecular structures of CPEs with ionic functionality, synthetic approaches, and their utilization as an interfacial layer. The orthogonal solubility of the CPEs allows the simple preparation of multilayer organic devices by solution casting on top of a nonpolar organic photoactive layer without disturbing the interfaces, showing their effectiveness in tuning the electronic structures at the interfaces for improving the charge carrier transport and resulting device properties. These achievements highlight the dynamic nature of CPEs and their applicability to a wide range of optoelectronic devices

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Get PDF
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher concentrations of serum lipids and apolipoprotein B100 (apoB) are major individual risk factors of atherosclerosis and coronary heart disease. Therefore ameliorative effects of food components against the diseases are being paid attention in the affluent countries. The present study was undertaken to investigate the effect of taurine on apoB secretion and lipid metabolism in human liver model HepG2 cells.</p> <p>Results</p> <p>The results demonstrated that an addition of taurine to the culture media reduces triacylglycerol (TG)-mass in the cells and the medium. Similarly, cellular cholesterol-mass was decreased. Taurine inhibited the incorporation of [<sup>14</sup>C] oleate into cellular and medium TG, suggesting the inhibition of TG synthesis. In addition, taurine reduced the synthesis of cellular cholesterol ester and its secretion, suggesting the inhibition of acyl-coenzyme A:cholesterol acyltransferase activity. Furthermore, taurine reduced the secretion of apoB, which is a major protein component of very low-density lipoprotein.</p> <p>Conclusion</p> <p>This is a first report to demonstrate that taurine inhibits the secretion of apoB from HepG2 cells.</p

    Laparoendoscopic Single-Site Surgery (LESS) for Excision of a Seminal Vesicle Cyst Associated with Ipsilateral Renal Agenesis

    Get PDF
    We report a case of laparoendoscopic single-site surgery (LESS) for a symptomatic left seminal vesicular cyst and ipsilateral renal agenesis. A 49-year-old man presented with a 1-year history of severe irritation upon voiding and intractable, recurrent hematospermia. A computed tomography scan showed a 68×41×38 mm sized left seminal vesicular cyst with ipsilateral renal agenesis. LESS was performed successfully to treat the seminal vesicle cyst. The total operative time was 125 minutes, and blood loss was minimal. The patient was discharged from the hospital on the second postoperative day

    Effects of Gas on Formation and Evolution of Stellar Bars and Nuclear Rings in Disk Galaxies

    Get PDF
    We run self-consistent simulations of Milky Way-sized, isolated disk galaxies to study formation and evolution of a stellar bar as well as a nuclear ring in the presence of gas. We consider two sets of models with cold or warm disks that differ in the radial velocity dispersions, and vary the gas fraction fgasf_{\rm gas} by fixing the total disk mass. A bar forms earlier and more strongly in the cold disks with larger fgasf_{\rm gas}, while gas progressively delays the bar formation in the warm disks . The bar formation enhances a central mass concentration which in turn makes the bar decay temporarily, after which it regrows in size and strength, eventually becoming stronger in models with smaller fgasf_{\rm gas}. Although all bars rotate fast in the beginning, they rapidly turn to slow rotators. In our models, only the gas-free, warm disk undergoes rapid buckling instability, while other disks thicken more gradually via vertical heating. The gas driven inward by the bar potential readily forms a star-forming nuclear ring. The ring is very small when it first forms and grows in size over time. The ring star formation rate is episodic and bursty due to feedback, and well correlated with the mass inflow rate to the ring. Some expanding shells produced by star formation feedback are sheared out in the bar regions and collide with dust lanes to appear as filamentary interbar spurs. The bars and nuclear rings formed in our simulations have properties similar to those in the Milky Way
    corecore