67 research outputs found

    Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking

    Full text link
    The equality between the spectral, directional emittance and absorptance of an object under local thermal equilibrium is known as Kirchhoff's law of radiation. The breakdown of Kirchhoff's law of radiation is physically allowed by breaking time reversal symmetry and can open opportunities for nonreciprocal light emitters and absorbers. Large anomalous Hall conductivity and angle recently observed in topological Weyl semimetals, particularly type-I magnetic Weyl semimetals and type-II Weyl semimetals, are expected to create large nonreciprocal electromagnetic wave propagation. In this work, we focus on type-I magnetic Weyl semimetals and show via modeling and simulation that nonreciprocal surface plasmons polaritons can result in pronounced nonreciprocity without an external magnetic field. The modeling in this work begins with a single pair of Weyl nodes, followed by a more realistic model with multiple paired Weyl nodes. Fermi-arc surface states are also taken into account through the surface conductivity. This work points to the promising applicability of topological Weyl semimetals for magneto-optical and energy applications.Comment: 24 pages, 4 figure

    High-performance chiral all-optical logic gate based on topological edge states of valley photonic crystal

    Full text link
    For all-optical communication and information processing, it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations. All-optical logic gates have been demonstrated based on conventional waveguides and interferometry, as well as photonic crystal structures. Nonetheless, any defects in those structures will introduce high scattering loss, which compromises the fidelity and contrast ratio of the information process. Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals (VPCs), we propose a high-performance all-optical logic OR gate based on a VPC structure. By tuning the working bandwidth of the two input channels, we prevent interference between the two channels to achieve a stable and high-fidelity output. The transmittance of both channels is higher than 0.8, and a high contrast ratio of 28.8 dB is achieved. Moreover, the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs, representing "1" or "0", which is highly desired in quantum computing. The device's footprint is small, allowing high-density on-chip integration. In addition, this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication, information processing, and quantum computing.Comment: 10 pages, 6 figure

    Quantized Thermoelectric Hall Effect Induces Giant Power Factor in a Topological Semimetal

    Get PDF
    Thermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower Sxx= 1.1x10^3 muV/K and giant power factor ~525 muW/cm/K^2 are observed at ~40K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.Comment: 54 pages total, 5 main figures + 22 supplementary figures. To appear in Nature Communications (2020

    Through the Lens of Core Competency: Survey on Evaluation of Large Language Models

    Full text link
    From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation

    Deep Geophysical Anomalies Beneath the Changbaishan Volcano

    Get PDF
    Subsurface imaging is key to understanding the origin of intraplate volcanoes. The Changbaishan volcano, located about 2,000 km away from the western Pacific subduction zone, has several debated origins. To investigate this, we compared regional seismic tomography with the electrical resistivity results and obtained high-resolution 1D and quasi-2D velocity-depth profiles. We show that the upper mantle is characterized by two anomalies exhibiting distinct features which cannot be explained by the same mechanism. We document a localized low-velocity anomaly atop the 410-km discontinuity, where the P-wave velocity is reduced more than that of the S-wave (i.e., lower Vp/Vs). We propose that this anomaly is caused by the reduction of the effective moduli during the phase transformation of olivine. The other anomaly, located between 300 and 370 km depth, reveals a significant reduction of the S-wave velocity (i.e., higher Vp/Vs), associated with a reduction of the electrical resistivity, altogether consistent with partial melting
    corecore