92 research outputs found

    Asymptotic behavior of solutions to the Yamabe equation with an asymptotically flat metric

    Full text link
    We prove that any positive solution of the Yamabe equation on an asymptotically flat nn-dimensional manifold of flatness order at least n22\frac{n-2}{2} and n24n\le 24 must converge at infinity either to a fundamental solution of the Laplace operator on the Euclidean space or to a radial Fowler solution defined on the entire Euclidean space. The flatness order n22\frac{n-2}{2} is the minimal flatness order required to define ADM mass in general relativity; the dimension 2424 is the dividing dimension of the validity of compactness of solutions to the Yamabe problem. We also prove such alternatives for bounded solutions when n>24n>24. We prove these results by establishing appropriate asymptotic behavior near an isolated singularity of solutions to the Yamabe equation when the metric has a flatness order of at least n22\frac{n-2}{2} at the singularity and n<24n<24, also when n>24n>24 and the solution grows no faster than the fundamental solution of the flat metric Laplacian at the singularity. These results extend earlier results of L. Caffarelli, B. Gidas and J. Spruck, also of N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen, when the metric is conformally flat, and work of C.C. Chen and C. S. Lin when the scalar curvature is a non-constant function with appropriate flatness at the singular point, also work of F. Marques when the metric is not necessarily conformally flat but smooth, and the dimension of the manifold is three, four, or five, as well as recent similar results by the second and third authors in dimension six.Comment: 51 page

    Characterization of transcriptional regulation of neurogranin by nitric oxide and the role of neurogranin in SNP-induced cell death: implication of neurogranin in an increased neuronal susceptibility to oxidative stress

    Get PDF
    Neurogranin (Ng), a calmodulin (CaM)-binding protein kinase C (PKC) substrate, regulates the availability of Ca(2+)/CaM complex and modulates the homeostasis of intracellular calcium in neurons. Previous work showed Ng oxidation by NO donor induces increase in [Ca(2+)](i). The current study demonstrated that the gene transcription of Ng could be up-regulated by various nitric oxide (NO) donors via a NO-soluble guanylyl cyclase (sGC)-mediated pathway. Furthermore, ectopic expression of neuronal nitric oxide synthase (nNOS) in human embryonic kidney 293 cells (HEK 293) exhibited a nNOS-concentration-dependent biphasic regulatory effect on Ng gene transcription. One of the NO donors, sodium nitroprusside (SNP), however, induced cell death of neuroblastoma Neuro-2a cells. The potency of SNP-induced cell death was shown to be higher in Neuro-2a cells expressing recombinant Ng, as compared with Neuro-2a control cells without Ng expression in cell viability and apoptosis assays. Single-cell fluorescence imaging and site-directed mutagenesis studies suggest that Ng promotes SNP-induced cell death through an amplification of calcium-mediated signaling, which requires the interaction between CaM and IQ motif of Ng. Increased neuronal susceptibility rendered by Ng in response to pathophysiological NO production is suggested to be involved in the selective vulnerability of neurons to oxidative insults in the CNS

    Preliminarily Static Analysis of CFETR Central Solenoid Magnet System

    Get PDF
    Conceptual design of China Fusion Engineering Test Reactor (CFETR) Central Solenoid (CS) coil had been started in Institute of Plasma Physics, Chinese Academy of Sciences. The highest field of CS coil is 17.2 T when the running current is 60 kA. CS magnet system mainly consists of 8 Nb3Sn coils compressed with 8 sets of preload structure. The functions of the preload structure are to apply an enough axial compression to the CS coils and to have a mechanical rigidity against the repulsive force between 8 Nb3Sn coils. This paper describes structural design of CFETR CS magnet system. A global finite element model is created based on the design geometry data to investigate the mechanical property of CFETR CS preload structure and support structure under the different operating conditions. 2D finite element model under electromagnetic is created to calculate the stress on the conductor jacket and turn insulation.</p

    Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship

    Get PDF
    In this paper, energy management strategy based on fuzzy logic is proposed for a fuel cell hybrid ship, combining proton exchange membrane fuel cell (PEMFC), battery and ultra-capacitor (UC). This hybrid system aims to optimize power distribution among each energy unit. The simulation model of the fuel cell hybrid power system is established in the MATLAB/SIMULINK simulation environment. The fuzzy logic energy strategy is verified by simulation according to the typical drive cycle of ship. The simulation results show that the proposed energy management strategy is able to satisfy power required by the ship, reduce the dynamic load of fuel cell, maintain the state of charge (SOC) of battery and SOC of the UC, and optimize the performance, fuel economy and efficiency of the hybrid systemThe research is supported by the program of the National Natural Science Foundation (No.61304186 and No.51007056)

    A cytomegalovirus peptide-specific antibody alters natural killer cell homeostasis and ss shared in several autoimmune diseases

    Get PDF
    Human cytomegalovirus (hCMV), a ubiquitous beta-herpesvirus, has been associated with several autoimmune diseases. However, the direct role of hCMV in inducing autoimmune disorders remains unclear. Here we report the identification of an autoantibody that recognizes a group of peptides with a conserved motif matching the Pp150 protein of hCMV (anti-Pp150) and is shared among patients with various autoimmune diseases. Anti-Pp150 also recognizes the single-pass membrane protein CIP2A and induces the death of CD56bright NK cells, a natural killer cell subset whose expansion is correlated with autoimmune disease. Consistent with this finding, the percentage of circulating CD56bright NK cells is reduced in patients with several autoimmune diseases and negatively correlates with anti-Pp150 concentration. CD56bright NK cell death occurs via both antibody- and complement-dependent cytotoxicity. Our findings reveal that a shared hCMV-induced autoantibody is involved in the decrease of CD56bright NK cells and may thus contribute to the onset of autoimmune disorders

    Applications of nanogenerators for biomedical engineering and healthcare systems

    Get PDF
    The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self-powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self-powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real-time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks.Web of Science4

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore