2,696 research outputs found

    Non-Hermitian Stark Many-Body Localization

    Full text link
    Utilizing exact diagonalization (ED) techniques, we investigate a one-dimensional, non-reciprocal, interacting hard-core boson model under a Stark potential with tail curvature. By employing the non-zero imaginary eigenenergies ratio, half-chain entanglement entropy, and eigenstate instability, we numerically confirm that the critical points of spectral real-complex (RC) transition and many-body localization (MBL) phase transition are not identical, and an examination of the phase diagrams reveals that the spectral RC transition arises before the MBL phase transition, which suggests the existence of a novel non-MBL-driven spectral RC transition. These findings are quite unexpected, and they are entirely different from observations in disorder-driven interacting non-Hermitian systems. This work provides a useful reference for further research on phase transitions in disorder-free interacting non-Hermitian systems.Comment: Any comments or suggestions are welcome

    CCR: Facial Image Editing with Continuity, Consistency and Reversibility

    Full text link
    Three problems exist in sequential facial image editing: incontinuous editing, inconsistent editing, and irreversible editing. Incontinuous editing is that the current editing can not retain the previously edited attributes. Inconsistent editing is that swapping the attribute editing orders can not yield the same results. Irreversible editing means that operating on a facial image is irreversible, especially in sequential facial image editing. In this work, we put forward three concepts and corresponding definitions: editing continuity, consistency, and reversibility. Then, we propose a novel model to achieve the goal of editing continuity, consistency, and reversibility. A sufficient criterion is defined to determine whether a model is continuous, consistent, and reversible. Extensive qualitative and quantitative experimental results validate our proposed model and show that a continuous, consistent and reversible editing model has a more flexible editing function while preserving facial identity. Furthermore, we think that our proposed definitions and model will have wide and promising applications in multimedia processing. Code and data are available at https://github.com/mickoluan/CCR.Comment: 10 pages, 11 figure

    Clinical Characteristics of Recurrent Nasopharyngeal Carcinoma in High-Incidence Area

    Get PDF
    Background. To describe the clinical characteristics of the patients who suffered from relapse after conventional irradiation for nasopharyngeal carcinoma (NPC). Methods. Three hundred and fifty-one consecutive patients with first-time recurrent NPC between January 1999 and July 2005 were included. The patients' clinical data were reviewed, including recurrent interval time, symptoms, signs, imaging characteristics, pathologic features, and restaging. Results. The median interval of relapse was 26.0 months. The most common symptoms in symptomatic patients were nasal bloody discharge (37.9%) and headache (31.1%). Local recurrence alone accounted for 73.5%. Most patients were restaged as stage III (23.1%) and stage IV (51.1%). Subgroup analysis suggested a significantly higher proportion of the long-latent relapses originated from early primary. A series of postreirradiation complications were more frequent in patients with longer latency at reception. Conclusions. Most recurrent nasopharyngeal carcinoma is advanced disease. Patients with different recurrent interval time show different nature behavior

    Far-field Super-resolution Chemical Microscopy

    Full text link
    Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.Comment: 34 pages, 8 figures,1 tabl

    Mask-Attention-Free Transformer for 3D Instance Segmentation

    Full text link
    Recently, transformer-based methods have dominated 3D instance segmentation, where mask attention is commonly involved. Specifically, object queries are guided by the initial instance masks in the first cross-attention, and then iteratively refine themselves in a similar manner. However, we observe that the mask-attention pipeline usually leads to slow convergence due to low-recall initial instance masks. Therefore, we abandon the mask attention design and resort to an auxiliary center regression task instead. Through center regression, we effectively overcome the low-recall issue and perform cross-attention by imposing positional prior. To reach this goal, we develop a series of position-aware designs. First, we learn a spatial distribution of 3D locations as the initial position queries. They spread over the 3D space densely, and thus can easily capture the objects in a scene with a high recall. Moreover, we present relative position encoding for the cross-attention and iterative refinement for more accurate position queries. Experiments show that our approach converges 4x faster than existing work, sets a new state of the art on ScanNetv2 3D instance segmentation benchmark, and also demonstrates superior performance across various datasets. Code and models are available at https://github.com/dvlab-research/Mask-Attention-Free-Transformer.Comment: Accepted to ICCV 2023. Code and models are available at https://github.com/dvlab-research/Mask-Attention-Free-Transforme

    Enhancement of polar phases in PVDF by forming PVDF/SiC nanowire composite

    Get PDF
    Different contents of silicon carbide (SiC) nanowires were mixed with Poly(vinylidene fluoride) (PVDF) to facilitate the polar phase crystallization. It was shown that the annealing temperature and SiC content affected on the phase and crystalline structures of PVDF/SiC samples. Furthermore, the addition of SiC nanowire enhanced the transformation of non-polar α phase to polar phases and increased the relative fraction of β phase in PVDF. Due to the nucleating agent mechanism of SiC nanowires, the ion-dipole interaction between the negatively charged surface of SiC nanowires and the positive CH2 groups in PVDF facilitated the formation of polar phases in PVDF

    Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells.

    Get PDF
    Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7-8 weeks. Within 2-3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7-8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture
    corecore