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ABSTRACT 

Different contents of silicon carbide (SiC) nanowires were mixed with Poly(vinylidene 
fluoride) (PVDF) to facilitate the polar phase crystallization. It was shown that the 
annealing temperature and SiC content affected the phase and crystalline structures of 
PVDF/SiC samples. Furthermore, the addition of SiC nanowire enhanced the 
transformation of non-polar α phase to polar phases and increased the relative fraction 
of β phase in PVDF. Due to the nucleating agent mechanism of SiC nanowires, the 
interfacial interaction between the negatively charged surface of SiC nanowires and the 
positively charged CH2 groups of PVDF facilitated the formation of polar phases in 
PVDF.  
 

   Index Terms — Poly(vinylidene fluoride);  silicon carbide nanowires; polar phase; 
annealing temperature; content. 

 
1   INTRODUCTION 

 PIEZOELECTRIC materials are commonly used for pressure 
sensing [1-2], energy harvesting [3], health monitoring [4-5], 
etc. Comparing to  piezoelectric crystals and piezoelectric 
ceramics, piezoelectric polymers are considered as the ideal 
materials for wearable pressure sensor devices, owing to their 
high dielectric constant, flexibility, and biocompatibility. 
Among all the piezoelectric polymers, Polyvinylidene fluoride 
(PVDF) is one of the most investigated materials. The 
structure of PVDF molecules is a macromolecular chain, 
which consists of repeated units of CH2 groups and CF2 
groups. It is a semi-crystalline polymershowing complex 
polycrystalline structures and can be divided into five 
crystalline phases: α, β, γ, δ, and ε phases, which are related to 
different chain conformations [6-7]. The α phase is the most 
common crystalline phase and its main chain conformation 
presents as TGTG’ (trans-gauche-trans-gauche) structure. The 
dipole moments of α-PVDF are reversely arranged in order, 
showing no piezoelectricity. The PVDF film fabricated by 
slowly cooling from melt or solution casting will mostly 
contributes to α phase [8-9]. The α phase of PVDF can 
transform into δ phase by poling the material in strong electric 

field to  obtain feeble piezoelectricity. In the β phase of PVDF, 
the polymer chains have the all-trans (TTTT) planar zigzag 
conformation, in which hydrogen atoms and fluorine atoms are 
arranged on the opposite sides of the main chain, respectively. 
As for the β phase of PVDF, dipole moments point in the same 
direction, showing the strongest piezoelectricity. The γ phase 
of PVDF is formed from melting crystallization at high 
temperature (about 170℃) [10]. The γ and ε phases, with the 
main chain conformation of T3GT3G’, have weaker 
piezoelectricity in comparison with β phase, due to the T-G 
bond which presents at every third repeated T-T bond. Among 
these five phases, the non-polar α phase and the polar phases 
(β and γ phases) of PVDF are the most investigated. 

Many treatments have effects on the crystalline structures of 
PVDF, including mechanical stretching [11], heat treatment 
[12], electric field poling [13], electrospinning [14], [15], 
solvents species [16]. In recent years, some research works 
indicate that mixing PVDF with nano-fillers facilitates the 
formation of β phase in PVDF and improves its 
piezoelectricity. Indolia and Gaur added various contents of 
ZnO nanoparticles into PVDF solution to investigate the 
structural characteristics of PVDF/ZnO [17]. The degree of β 
phase increased when higher ZnO nanoparticle contents were 
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mixed in the PVDF film. Thakur et al. found that the addition 
of kadinite and halloysite induced the transformation of α 
phase into β phase [18]. According to the nucleation 
mechanism, the interaction between the kadinate/halloysite and 
the groups of PVDF can enhance the β phase crystallinity. Ye 
et al. incorporated PVDF films with tetradecylphosphonic acid 
(TDPA)-BaTiO3 [19]. They obtained a high crystallinity of β 
phase PVDF at about 93% with a TDPA-BaTiO3 
nanoparticles content of 20%. Other kinds of nano-fillers such 
as ferrite nanoparticles [20], gold nanoparticles [21], TiO2 
nanoparticles [22], clays [23] have been mixed into PVDF to 
enhance the piezoelectricity of PVDF film. As a ceramic and 
semiconductor material, silicon carbide (SiC) exhibits stable 
chemical properties, high thermal conductivity, small thermal 
expansion coefficient, and good wear resistance [24]. Mixing 
ceramic materials with PVDF is a simple way to improve the 
properties of the polymer [25]. SiC nanoparticle provides 
much larger length-to-diameter and surface-to-volume ratios 
than SiC nanowire and bulk SiC. Although some works have 
previously investigated the PVDF/SiC nanoparticles, mixing 
PVDF with SiC nanowires has not been comprehensively 
investigated and its mechanism is still not fully understood. 

In this work, we utilize SiC nanowires as a nucleating agent 
to facilitate the transformation of α phase into polar phases, 
improving the relative fraction of β phase in PVDF thin film. 
Thin films were prepared by solution processing at different 
ratios of PVDF/SiC. We investigated the crystalline structures 
and surface morphology of pure PVDF and PVDF/SiC 
nanowire composites, which were annealed at different 
temperatures. The interaction mechanism between PVDF and 
SiC nanowires was investigated and explained. 

2  EXPERIMENTAL 

2.1 MATERIALS 
PVDF (Mw=534,000) and N,N-dimethylacetamide (DMAc, 

purity of 99%) were purchased from Sigma Aldrich (St. Louis, 
Mo, USA). SiC nanowires (diameter of 100-600 nm, length of 
about 100 um, purity of 98%) were purchased from Xianfeng 
Nanomaterial Inc (Nanjing, China). 

2.2 PROCESSING 
PVDF powder was dissolved in N,N-dimethylacetamide 

(DMAc) solvent at the content of 10 wt% and stirred at room 
temperature on the magnetic stirrer for four hours until PVDF 
was completely dissolved. Different weights of SiC nanowires 
were added into PVDF solvent at the contents of 0 wt%, 2 
wt%, 5 wt%, and 8 wt%, respectively. By stirring at room 
temperature for over 48 hours and ultra-sonicating for one 
hour, good dispersion of SiC in PVDF solution was achieved. 
The solution of PVDF/SiC was drop-casted on a dry glass, 
which was cleaned in acetone, alcohol, and de-ionized water 
for 15 minutes, respectively. The pure PVDF and PVDF/SiC 
composite samples were annealed on a hot plate at 140℃ and 
80℃ for 2 hours, respectively, to evaporate DMAc solvent 
completely, then cooled slowly at the rate of about 1℃/min to 

room temperature. Pure PVDF and PVDF/SiC composites 
were crystallized during these annealing processes. The sample 
films after cooling were peeled off and prepared for the 
following testing and characterization. 

2.3 CHARACTERIZATION 
In order to identify the polycrystalline structures of pure 

PVDF and PVDF/SiC composites with different SiC contents 
and annealed at different temperatures, optical microscope 
(OM, AxioCam MRc 5, ZEISS), scanning electron microscope 
(SEM, Carl Zeiss Microscopy GmbH, SUPRA 60) and atomic 
force microscope (AFM, NTEGRA Spectra) were used to 
observe the surface morphology. X-ray diffraction (XRD, 
Empyrean) and fourier transform infrared spectroscopy (FT-
IR, EQUINOX 55) were used to analyze the crystalline 
structures of pure PVDF and PVDF/SiC composite films. 
Differential scanning calorimetry (DSC, Netzsch 204) was 
used to measure the overall crystallinity of the PVDF samples. 
Stylus profiler (Veeco Dektak 150) was used to measure the 
thickness of the PVDF/SiC films. Energy dispersive 
spectroscope (EDS, X-MaxN, Oxford Instrument) was used to 
detect the chemical element contents in SiC nanowires, and a 
multi-parameter tester (S470-USP/EP SevenExcellence™ 
pH/Conductivity Meter Kit, Mettler Toledo) was used to 
measure the acid-base property of DMAc solvent. 

3  RESULTS 

3.1 CRYSTALLINE STRUCTURES AND SURFACE 
MORPHOLOGY OF PURE PVDF ANNEALED AT 140

℃ AND 80℃ 
Annealing temperature has influence on the crystalline 

phase of PVDF. Figure 1 shows the XRD patterns of pure 
PVDF annealed at 140℃ and 80℃. When the pure PVDF film 
was annealed at 140℃, the crystalline phase of pure PVDF 
was mainly α phase. The diffraction peaks at 17.7°, 18.3°, 
19.9°, and 26.6° correspond to the α phase at the (100), (020), 
(110), and (021) planes of the α phase of PVDF, respectively 
[26-27]. When the pure PVDF was annealed at 80℃, the β 
phase of PVDF with the diffraction peak of 20.3° and γ phase 
of PVDF with the diffraction peak of 18.7° were observed in 
the XRD pattern [26]. From the FT-IR spectra shown in Figure 
1b, the characteristic bands at 1180 and 880 cm-1 are assigned 
to the vibration of carbon-carbon skeleton, 1402 cm-1 
corresponds to the swing vibration of CH2, and 1170 cm-1 is 
related to the stretching vibration of CF2 [28-29]. The 
characteristic bands at 764, 795, 855, 976, 1147, 1210, and 
1383 cm-1 correspond to α phase of PVDF [26-27, 30]. 
Although a weak characteristic band of 840 cm-1 presented in 
the pure PVDF treated at 140℃, most of the characteristic 
bands were related to α phase. This coincided with the XRD 
result. It confirmed that the domain crystalline form of pure 
PVDF annealed at 140℃ was α phase. Whereas at 80℃, the 
absorption band of β phase at 840 cm-1 and absorption band of 
γ phase at 1234 cm-1 were clearly observed [26-27]. In the  



 

 
Figure 1. (a) XRD patterns and (b) FT-IR spectra of pure PVDF annealed at 
140℃ and 80℃ 
 

meantime, the intensity of all the characteristic bands 
corresponding to α phase was less or even not observed. This 
showed that the dominant crystalline structure were β and γ 
phases instead of α phase. Both XRD patterns and FT-IR 
spectra proved that the annealing temperature has influence on 
the crystalline phases of PVDF. When the annealing 
temperature was around 140℃, PVDF was inclined to form 
non-polar α phase instead of polar β phase. This coincides with 
the explanation from Hsu and Geil [31]. 

3.2 SURFACE MORPHOLOGY OF PURE PVDF 
ANNEALED AT 140℃ AND 80℃ 

The α and β phases of PVDF show different surface 
morphologies. The SEM and AFM topographic images of pure 
PVDF further provided evidence of phase transformation 
between the annealing temperature of 140℃ and 80℃. Before 
the observation of SEM, a thin layer of fine gold was 
deposited on the surface of the samples to avoid accumulating 
negative charges. From Figure 2, we observed that the 
crystalline morphology of PVDF annealed at 140℃ mostly 
exhibited the  

 

 

 
Figure 2. SEM images of pure PVDF annealed at (a) 140℃ and (b) 80℃; 
AFM topographic images of pure PVDF annealed at (c) 140℃ and (b) 80℃. 
 
large isotropic spherulite structure, which indicated the 
dominant crystalline phase was α phase [25, 32]. The surface 
of PVDF annealed at 80℃  were mostly covered with the 
crystallite structure which was related to β phase [32]. 
Furthermore, the AFM topographic image of pure PVDF 
annealed at 140 ℃  exhibited long and thick wool-like 
structures, whereas the pure PVDF annealed at 80℃ mostly 
showed fine fiber-like surface. The AFM result indicated 
thatthe PVDF sample annealed at 140℃ has a lower surface 
roughness (Rq=36.6 nm), whereas the PVDF sample annealed 
at 80℃  has a rougher surface (Rq=67.9 nm). [The surface 
roughness of the film was analyzed to quantify the following 
parameters: RMS (Rq).] Both of the SEM and AFM 
topographic images revealed that pure PVDF was inclined to 
form α phase when annealed at 140℃, and to form β phase at 
80℃. 

3.3 CRYSTALLINE STRUCTURE OF PVDF/SIC 
COMPOSITES ANNEALED AT 140℃ AND 80℃ 

To investigate the effect of SiC nanowires on the crystalline 
structure of PVDF, various contents of SiC nanowires were 
added into PVDF solution. The SiC nanowires were found to 
be well dispersed in the PVDF matrix as indicated by SEM 
image (Figure 3a). The morphology of SiC nanowire was 
clearly observed at higher magnification of SEM image 
(Figure 3b). The diameter of the nanowire was about 500 nm. 
The optical microscope image showed the various lengths of 
SiC nanowires (Figure 3c). The thickness of PVDF/SiC film 
was about 25~30 um as measured by stylus profiler. 

In the FT-IR spectra of pure PVDF and PVDF/SiC 
composites shown in Figure 4, the absorption band presented 
at 802 cm-1 is assigned to the stretching vibration peak of Si-C 
bond [33]. 



 

 

 
Figure 3. (a) Low magnified image of SEM shows SiC nanowires were well 
dispersed in the PVDF matrix; (b) High magnified image of SEM presents the 
diameter of SiC nanowires; (c) The image of optical microscope present the 
length of SiC nanowires. 
 

When pure PVDF annealed at the temperature of 140℃, the 
dominant crystalline form was α phase. However, with the 
addition of SiC nanowires, the characteristic bands of α phase 
significantly decreased and even disappeared at higher doping 
concentrations, as shown in Figure 4a. At the close 
overlapping of the characteristic band of Si-C bond located at 
802 cm-1 and the α phase located at 795 cm-1 in the spectra, the 
growing of absorption band at approximately 800 cm-1 is 
ascribed to the Si-C bond with the increasing ratio of 
PVDF/SiC. In the meantime, the characteristic band of 840 
cm-1 corresponding to the β phase and the characteristic band 
of 1234 cm-1 corresponding to the γ phase were enhanced 
distinctly. As for the PVDF samples annealed at 80℃, β phase 
was the domain crystalline phase of pure PVDF. After mixing 
with SiC nanowires, the characteristic band of γ phases was 
enhanced, whereas the characteristic band of β phase was 
almost intact (Figure 4 and their partial enlarged drawings at 
the upper right corner). However, the characteristic bands of α 
phase located at 764, 976, and 1210 cm-1 were almost 
disappeared completely. Therefore, the results of FT-IR 
spectra confirmed that SiC nanowires promoted the formation 
of polar phases of PVDF while depressing the formation of α 
phase. 

3.4  OVERALL CRYSTALLINITY AND PHASE 
CONTENT OF PURE PVDF AND PVDF/SIC 

COMPOSITES 
As one of the two most common crystalline structures (non- 

polar α phase and polar β phase) of PVDF, the β phase is of 
great importance in the applications of PVDF because of its 

pyro- and piezoelectric properties [34]. Therefore, increasing 
the  

 
Figure 4. FT-IR spectra of pure PVDF and PVDF/SiC composites annealed at 
(a) 140℃ and (b) 80℃ 
 
relative fraction of β phase is the key in improving the 
performances of PVDF polymer.  

The overall crystallinity of the polymer can be obtained 
from the DSC thermograms. The samples were melted at 
200℃ for 10 min to erase the thermal history, then cooled 
from 200 to 20℃ at a rate of 10℃/min, and heated from 20℃ 
to 200℃ at the same rate. The DSC measurement processing 
was performed in N2 atmosphere. The overall crystallinity of 
pure PVDF and PVDF/SiC composite can be calculated using 
the following equation:    
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where △Hm is the actual melting enthalpy of the sample, △H0 
is the melting enthalpy of 100% crystalline sample. The 
melting enthalpy of 100% crystalline PVDF is 104.6 J/g [35]. 
The DSC results of pure PVDF and PVDF/SiC composite 
were shown in Table 1. As shown in Table 1, the overall 
crystallinity in PVDF/SiC composites is less than the pure 



 

PVDF. This is due to the fact that in the process of 
transforming α phase into β phase, the reduction in α phase 
crystallinity was more than the increase of β phase crystallinity. 
This is clearly seen in the FT-IR spectra. The maximum Xc 
was found to be 53.4% for pure PVDF sample, whose domain 
crystal was α phase. For the PVDF/SiC composites, the overall 
crystallinity Xc increased with the increasing content of SiC 
nanowires. However, further measurement will need be taken 
for calculating the relative fraction of β phase in the pure 
PVDF and PVDF/SiC composites. 
Table 1. Overall Crystallinity of pure PVDF and PVDF/SiC composites 

Samples △Hm（J/g） Xc（%） 
PVDF 53.6 53.4 
PVDF/2SiC 46.0 45.8 
PVDF/5SiC 48.8 48.6 
PVDF/8SiC 49.2 49.0 

 
FT-IR spectra are commonly used to calculate the relative 

fraction of β phase by quantifying the α and β phases of PVDF 
at the characteristic absorption bands of 764 and 840 cm-1, 
which was explained by Gregorio [11-12, 19]. This method is 
based on the assumption that FT-IR absorption obeys the 
Lambert-Beer law, and it was used in multiple studies [11, 18, 
23]. The absorption coefficients Kα and Kβ are calculated at 
the absorption bands of 764 and 840 cm-1. The relative 
fraction of β phase in PVDF samples containing α and β 
phases can be calculated using the following equation [12]: 
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Where F(β) is the relative β phase content of the sample; Aα 
and Aβ represent the absorbance at the bands of 764 and 840 
cm-1; Kα and Kβ are the absorption coefficients at the 
corresponding wavenumber. The values of Kα and Kβ are  
6.1×104 and 7.7×104 cm2/mol, respectively [12]. 

For the PVDF/SiC composites, the variation of the relative 
β phase fraction as a function of the increasing content of SiC 
nanowires was shown in Figure 5. Generally, the relative 
fraction of β phase firstly increases upon increasing the doping 
concentration of SiC nanowires, and then reaches a maximum 
value at certain concentration of SiC nanowires. This pattern 
was observed in both cases where the samples were annealed 
at 140℃  and 80℃, but showing different curve growing 
profiles and different optimized doping concentrations. For 
PVDF annealed at 140℃, the relative crystalline fraction of β 
phase was only 17%. With the addition of SiC nanowires, the 
relative fraction of β phase increased markedly and reached a 
maximum value of around 54% at the doping concentration of 
5 wt%. PVDF/SiC composite samples annealed at 80 ℃ 
presented higher relative fractions of β phase than those 
annealed at 140 ℃  at the same doping SiC nanowire 
concentration. A maximum β phase fraction of around 80% 
was seen in the sample with 2 wt% SiC nanowire 
concentration and annealed at 80℃. After the maximum value 
was reached, the relative fraction of β phase began to reduce as 

the SiC doping concentration increased further, which 
coincided  

 
Figure 5. Relative fraction of β phase with increasing SiC nanowires content. 
 
with the results of PVDF/kaolinite and PVDF/TDPA-BaTiO3 
obtained by Thakur and Ye, respectively [18-19]. Obviously, 
mixing PVDF with SiC nanowires can improve the relative 
fraction of β phase in the PVDF/SiC composites, especially at 
the annealing temperature of 80℃. Even for the pure PVDF 
that form little β phase when annealed at 140℃, adding certain 
value of SiC nanowires can substantially increase the relative 
fraction of β phase. 

4  DISCUSSION 
FT-IR spectra indicates that the addition of SiC nanowires 

favors the formation of polar phases in PVDF. It is conceived 
that SiC nanowires can interact with PVDF molecules, 
facilitating the formation of polar phases and reducing the 
proportion of non-polar α phase. In order to explore the 
interacting mechanism between PVDF polymer and SiC 
nanowires, we investigated the surface of SiC nanowires. The 
surface of SiC nanowires can be easily oxidized and form a 
thin (1-2 nm) amorphous film which is mostly SiO2 [36]. To 
prove the existence of SiO2 in the SiC nanowires, energy 
dispersive spectroscope (EDS) tests were conducted to 
measure the chemical contents of the nanowires. In the EDS 
spectra of the raw SiC nanowires, the chemical element of 
carbon, oxygen, and silicon were detected with the weight 
percentage values of 15.38%, 0.78%, and 83.84%, 
respectively. It indicated that the surface of the SiC nanowires 
was oxidized and a thin SiO2 layer was formed. When SiC 
nanowires were dispersed in the reaction solution, the 
amorphous SiO2 thin films (Si-O-Si bond) on the surface of 
SiC nanowire will hydrolyze and form the stable silanol (Si-
OH) films. The process of SiO2 hydrolysis reaction can be 
described by the chemical equation shown below: 

2 2SiO H O SiOH� o  
SiOH will generate positively charged [SiOH2]+ in acidic 
conditions and create negatively charged SiO- and water by 
dehydrogenation in alkaline environment, as following shown 



 

[37]: 

 
Figure 6. FT-IR spectra of pristine SiC nanowires and SiC nanowires treated 
with DMAc solution. 
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The pH value of DMAc solvent used in the treatment solution 
was measured by the multi-parameter tester and its value was 
10.11, which indicated that DMAc solution was alkaline. As 
shown in the FT-IR spectra of pristine SiC nanowires and SiC 
nanowires treated with DMAc (Figure 6), the characteristic 
bands at 921 cm-1 (Si-OH stretching) and 3436 cm-1 (-OH 
group) were enhanced, indicating that DMAc could facilitate 
the hydrolysis of SiO2 and form more Si-OH bonds on the 
surface of SiC nanowire [38]. In alkaline conditions, the Si-
OH groups will transfer the proton (H+) to the basic species in 
the solvent, forming the anionic group Si-O- on the SiC 
nanowire surface [37], as shown in Figure 7b. Therefore, the 
surface of SiC nanowire was negatively charged. The 
negatively charged surface of SiC nanowires and the positive 
charge of CH2 groups of PVDF exhibited an affinity between  

 
Figure 7. (a) Schematic representation of the interaction mechanism between 
PVDF polymer and SiC nanowires; (b) The flow chart of chemical reactions 

occur on the surface of SiC nanowire. 
the SiC nanowires and PVDF. The ion-dipole interaction 
caused the polymer chains to align on the SiC nanowire 
surface, facilitating the preferential formation of β and γ 
phases chain conformation of PVDF, as shown in Figure 7a. 
The enhancement of β phase crystallization of PVDF was 
attributed to the regular dipole orientation and PVDF 
molecular chain alignment along SiC nanowires in long-range 
order. Therefore, SiC nanowires acted as the nucleating agents 
and favored the formation of all-trans planar zigzag chain 
conformation of PVDF. Similar mechanisms were reported in 
the previous studies: the formation of β-PVDF with modified 
clay [23], kaolinite/halloysit [18], palladium nanoparticles [32], 
gold nanoparticle and gold nanoshell [39]. Due to the different 
extents of interaction force between the CH2 groups and 
negatively charged surface of SiC nanowires upon their 
distance, PVDF polymer may form β phase in the vicinity of 
SiC nanowire, and form γ phase with a slight distance away 
from the SiC nanowire. 

5  CONCLUSION 
In this work, pure PVDF and PVDF/SiC-nanowire 

composite films with different SiC doping concentrations of 2 
wt%, 5 wt%, and 8 wt% were prepared by solution processing. 
The samples were annealed at 140℃ and 80℃, respectively, 
to investigate the phase and crystalline structures 
transformations of PVDF. Annealing temperature and SiC 
doping concentrations have significant effects on the phase 
types and phase fractions. The maximum relative fraction of β 
phase in PVDF of about 54% was obtained at the doping SiC 
nanowire concentration of 5 wt% when the annealing 
temperature was 140℃. As for the samples annealed at 80℃, 
the β phase presented higher fraction of about 80% at the SiC 
nanowire concentration of 2 wt%. The electrostatic interaction 
between the CH2 dipoles of PVDF and negatively charged 
surface of SiC nanowires led to the change in dipole 
orientation. As a result, the molecular chains of PVDF orderly 
aligned along the SiC nanowires and the CF2 dipoles arranged 
in the direction perpendicular to the polymer chain, which 
favored the formation of polar phases, and could potentially 
improve the piezoelectric property of PVDF polymer. 
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