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The obstacle motion state estimation is an essential task in intelligent vehicle. The ASCL group has developed such a system that
uses a radar and GPS/INS. When running on the road, the acceleration of the vehicle is always changing, so it is hard for constant
velocity (CV) model and constant acceleration (CA) model to describe the motion state of the vehicle. This paper introduced
Current Statistical (CS) model from military field, which uses the modified Rayleigh distribution to describe acceleration. The
adaptive Kalman filter based onCSmodel was used to estimate themotion state of the target.We conducted simulation experiments
and real vehicle tests, and the results showed that the estimation of position, velocity, and acceleration can be precise.

1. Introduction

In recent years, the lane departure warning system, front
collision warning system, adaptive cruise control system, and
other automotive advanced driver assistance systems, which
are based on the radar and computer vision, have become
hot research topics in the international automotive safety
technology [1–4].

In order to obtain the motion state information of the
front vehicle comprehensively and achieve target identifi-
cation effectively and accurately, the researchers of Bosch,
Delphi, and other institutions proposed obstacle motion state
estimation algorithm [5, 6]. And most of the studies use
maneuvering target trackingmethods from themilitary field,
which are used to detect the aircraft, missile, and other flyers
[7–11].

Friedland assumed that the target maintains a constant
velocity relative to the radar, and the relative acceleration is
considered to be the random interference in which the mean
is zero. He established a two-order Kalman filter based on
CV model [12]. The position and velocity estimation error

are small when the velocity of the target is constant, but these
estimation errors are larger when speed of the target changes.

Hampton assumed that the target maintains a constant
acceleration relative to the radar, and the change of the rela-
tive acceleration is considered to be the random interference
in which the mean is zero. He established a three-order
Kalman filter based on CA model [13]. The position and
velocity estimation error are small when the velocity or the
acceleration of the target is constant, but these estimation
errors are larger when the acceleration changes.

Singer proposed Singer model [14]. Singer model is
a zero-mean model for motor acceleration, which is not
reasonable to maneuvering target with mutative velocity and
acceleration. It is generally agreed that the data range of next
moment acceleration is limited.

Blom and Bar-Shalom proposed the Interactive Multiple
Model (IMM) algorithm [15–18]. It allows for several parallel
models which are combined to aweighted estimate. Choosing
models for different driving modes, such as constant velocity,
constant acceleration, and strong acceleration changes, the
target state estimation can be optimized for highly dynamic
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maneuvers. But the amount of processing is large and if the
weight set is not accurate enough, the estimation perfor-
mance will decrease.

Hou of Tsinghua University assumed that the change
rate of the acceleration is constant and he established a
four-order Kalman filter [19]. When the acceleration of the
target changes often, the position, velocity, and acceleration
estimation is more accurate compared to the Kalman filter
based on CV model or CA model. But it is a prior model
and it is not an adaptive system according to the change of
the acceleration. And if the change rate of the acceleration
changes, the position, velocity, and acceleration estimation
will be less precise.

In order to improve the accuracy of target state esti-
mation, this paper introduces CS model [20, 21] from
military and aerospace field, which is using the modified
Rayleigh distribution to describe acceleration. Compared
to the CA model, the CS model is more aligned with the
actual acceleration change laws. The author established the
adaptive Kalman filter based on the CS model. It uses the
variance of the modified Rayleigh distribution to adjust the
optimal Kalman gain at the next time, which improved the
accuracy of the target motion state estimation. In addition,
the motion modeling and filtering are based on absolute
motion in absolute coordinate by using the GPS/INS, which
can improve the accuracy.

The paper is organized as follows. In Section 1, a brief
introduction on the target state estimation and modeling
method is given. Section 2 presents the method for the
target state estimation. In Sections 3 and 4 the simulation
experiments and real vehicle test results are compared for CA
model. Conclusions are presented in Section 5.

2. Target Motion State Estimation Model

In this paper the object state estimation is to use the estima-
tion algorithm based on the target motion model to identify
the state (position, velocity, and acceleration) accurately and
in real time. The key element is to find a suitable model for
target and an appropriate estimation algorithm.

When driving on the road, the time that the vehicle
maintains constant velocity and acceleration is always short
and the acceleration changes a lot, such as overtaking. So
when using the Kalman filtering algorithm based on the CV
model or the CA model to estimate the state of real vehicle,
the error is large. But that of the adaptive Kalman filtering
algorithm based on the CS model is not.

2.1. Target Motion Model

2.1.1. The “Current” Probability Density Model of the Maneu-
vering Target. Probability density function of Rayleigh distri-
bution is expressed as follows:

𝑃 (𝑧) =
𝑧

𝜇2
exp[− 𝑧

2

2𝜇2
] 𝑧 ≥ 0. (1)

Figure 1 shows that if 𝜇 is determined, we can completely
determine the statistical properties of Rayleigh distribution.
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Figure 1: Rayleigh distribution.
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Figure 2: Modified Rayleigh distribution.

When a target is maneuvering with a certain acceleration
at present, the region of acceleration which can be taken
in the next instant is limited and is around the “current”
acceleration. Hence, it is unnecessary to take all possible
values of maneuvering acceleration into consideration when
modeling the target acceleration probability density. In this
situation, the reasonable statistical model is a maneuvering
acceleration probability distribution function that is time-
varying and using the current acceleration of the target as the
center, which is the modified Rayleigh distribution function
as shown in Figure 2.
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(1) When the acceleration of the obstacle is positive, the
probability density function of the acceleration can bewritten
as follows:

𝑃
𝑟
(𝑎)

=

{{{

{{{

{

𝐴max − 𝑎

𝜇2
exp[−

(𝐴max − 𝑎)
2

2𝜇2
] 0 < 𝑎 < 𝐴max

0 𝑎 ≥ 𝐴max,

(2)

where 𝐴max is positive maximum value of acceleration that
the target can reach, 𝑎 is the acceleration of the target, and 𝜇

is a positive constant.
Mean value and variance of 𝑎 are given as follows:

𝐸 [𝑎] = 𝐴max − √
𝜋

2
𝜇,

𝜎
2

𝑎
=

4 − 𝜋

2
𝜇
2
.

(3)

(2) When the acceleration of the obstacle is negative, the
probability density function of the acceleration can bewritten
as follows:

𝑃
𝑟
(𝑎)

=

{{{

{{{

{

𝑎 − 𝐴
−max

𝜇2
exp[−

(𝑎 − 𝐴
−max)
2

2𝜇2
] 𝐴

−max < 𝑎 < 0

0 𝑎 ≤ 𝐴
−max,

(4)

where 𝐴
−max is negative maximum value of acceleration that

the target can reach, 𝑎 is the acceleration of the target, and 𝜇

is a positive constant.
Mean value and variance of 𝑎 are given as follows:

𝐸 [𝑎] = 𝐴
−max + √

𝜋

2
𝜇,

𝜎
2

𝑎
=

4 − 𝜋

2
𝜇
2
.

(5)

(3) When the acceleration of the obstacle is zero, the
probability density function of the acceleration can bewritten
as follows:

𝑃
𝑟
(𝑎) = 𝛿 (𝑎) , (6)

where 𝛿(⋅) is the Dirac delta function.
In general, the maximum value of the target acceleration

can be predicted. So when the mean value of the target
acceleration is measured, 𝜇 can be written as follows:

𝜇 = √
𝜋

2
(𝑎max − 𝐸 [𝑎]) . (7)

And the variance of the acceleration is

𝜎
2

𝑎
=

4 − 𝜋

2
𝜇
2
=

4 − 𝜋

𝜋
(𝑎max − 𝐸 [𝑎])

2

. (8)

Therefore, as long as themean value of the target accelera-
tion is obtained, the variance of the target acceleration can be
obtained. The modified Rayleigh distribution is introduced
to establish an appropriate relation between the mean and
variance of the acceleration, so that the adaptive filtering
algorithm is easy to implement.

2.1.2. Time-Correlation Model of Acceleration. Under the
concept of “current” statistical model, when the target is
maneuvering at a certain acceleration, the zero-mean model
is obviously unreasonable, so the non-zero-mean time-
correlation model of the acceleration can be used:

𝑥̈ (𝑡) = 𝑎 + 𝑎 (𝑡) ,

̇𝑎 (𝑡) = −𝛼𝑎 (𝑡) + 𝑤 (𝑡) ,

(9)

where 𝑥(𝑡) is the position, 𝑥̈(𝑡) is the acceleration that the
variance is 𝜎2

𝑎
and mean is 𝑎, 𝑎(𝑡) is the colored noise that

the mean value is zero, 𝛼 is the maneuvering efficiency, 𝑤(𝑡)

is the white noise that themean value is zero, and the variance
is 2𝛼𝜎2

𝑎
.

Let 𝑎
𝑙
(𝑡) = 𝑎 + 𝑎(𝑡), and from (7) and (8), the following

formulae can be deduced:

𝑥̈ (𝑡) = 𝑎
𝑙
(𝑡) ,

̇𝑎
𝑙
(𝑡) = −𝛼𝑎

𝑙
(𝑡) + 𝛼𝑎 + 𝑤 (𝑡) = −𝛼𝑎

𝑙
(𝑡) + 𝑤

𝑙
(𝑡) ,

(10)

where 𝑎
𝑙
(𝑡) is the acceleration state variable and 𝑤

𝑙
(𝑡) is the

white noise in which the mean is 𝛼𝑎.
From the estimation theory, the optimal estimation of the

acceleration state variable 𝑎
𝑙
(𝑡) is the conditional mean of the

whole historical observed value 𝑌(𝑡):

𝑎
𝑙
(𝑡) = 𝐸 [𝑎

𝑙
(𝑡) | 𝑌 (𝑡)] . (11)

And the variance of 𝑤
𝑙
(𝑡) is

𝜎
2

𝑤
=

2𝛼 (4 − 𝜋)

𝜋
(𝑎max − 𝐸 [𝑎

𝑙
(𝑡) | 𝑌 (𝑡)])

2

. (12)

2.1.3. The Discrete State Equations. From (10), the following
formula can be deduced:

[
[

[

𝑥̇ (𝑡)

𝑥̈ (𝑡)

...
𝑥 (𝑡)

]
]

]

=
[
[

[

0 1 0

0 0 1

0 0 −𝛼

]
]

]

[
[

[

𝑥 (𝑡)

𝑥̇ (𝑡)

𝑥̈ (𝑡)

]
]

]

+
[
[

[

0

0

𝛼

]
]

]

𝑎 (𝑡)

+
[
[

[

0

0

1

]
]

]

𝑤 (𝑡) .

(13)
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Let 𝑇 be the sampling time and through the discrete
processing, the discrete system state equation is

𝑋(𝑘) = 𝐹 (𝑘 − 1)𝑋 (𝑘 − 1) + 𝑈 (𝑘 − 1) 𝑎 (𝑘 − 1)

+ 𝑊 (𝑘 − 1) ,

(14)

where𝑋(𝑘) = [𝑥(𝑘) 𝑥̇(𝑘) 𝑥̈(𝑘) 𝑦(𝑘) ̇𝑦(𝑘) ̈𝑦(𝑘)]
𝑇.

The state transition matrix is

𝐹 (𝑘)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 𝑇
1

𝛼2
(−1 + 𝛼𝑇 + 𝑒

−𝛼𝑇
) 0 0 0

0 1
1

𝛼
(1 − 𝑒

−𝛼𝑇
) 0 0 0

0 0 𝑒
−𝛼𝑇

0 0 0

0 0 0 1 𝑇
1

𝛼2
(−1 + 𝛼𝑇 + 𝑒

−𝛼𝑇
)

0 0 0 0 1
1

𝛼
(1 − 𝑒

−𝛼𝑇
)

0 0 0 0 0 𝑒
−𝛼𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(15)

where 𝑇 is the sampling step.

The input matrix is

𝑈 (𝑘)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

𝛼
(−𝑇 +

𝛼𝑇
2

2
+
1 − 𝑒
−𝛼𝑇

𝛼
) 0

𝑇 −
1 − 𝑒
−𝛼𝑇

𝛼
0

1 − 𝑒
−𝛼𝑇

0

0
1

𝛼
(−𝑇 +

𝛼𝑇
2

2
+
1 − 𝑒
−𝛼𝑇

𝛼
)

0 𝑇 −
1 − 𝑒
−𝛼𝑇

𝛼

0 1 − 𝑒
−𝛼𝑇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(16)

where 𝑎 is the mean value of acceleration:

𝑎 (𝑘) = [

𝑎
𝑥
(𝑘)

𝑎
𝑦
(𝑘)

] = [

[

̂̈𝑥 (𝑘 | 𝑘)

̂̈𝑦 (𝑘 | 𝑘)

]

]

. (17)

𝑊(𝑘) is the process noise, which is the discrete-time white
noise sequence that the covariance matrix is 𝑄(𝑘), 𝜎2

𝑎𝑥
is the

acceleration variance in 𝑋 direction of the target, and 𝜎
2

𝑎𝑦
is

the acceleration variance in 𝑌 direction of the target:

𝑄 (𝑘) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
11

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
12

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
13

0 0 0

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
21

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
22

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
23

0 0 0

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
31

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
32

2𝛼𝜎
2

𝑎𝑥
⋅ 𝑞
33

0 0 0

0 0 0 2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
11

2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
12

2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
13

0 0 0 2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
12

2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
22

2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
23

0 0 0 2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
13

2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
23

2𝛼𝜎
2

𝑎𝑦
⋅ 𝑞
33

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (18)

where

𝑞
11

=
1

2𝛼
5
[1 − 𝑒

−2𝛼𝑇
+ 2𝛼𝑇 +

2𝛼
3
𝑇
3

3
− 2𝛼
2
𝑇
2

− 4𝛼𝑇𝑒
−𝛼𝑇

] ,

𝑞
12

= 𝑞
21

=
1

2𝛼
4
[𝑒
−2𝛼𝑇

+ 1 − 2𝑒
−𝛼𝑇

+ 2𝛼𝑇𝑒
−𝛼𝑇

− 2𝛼𝑇

+ 𝛼
2
𝑇
2
] ,

𝑞
13

= 𝑞
31

=
1

2𝛼
3
[1 − 𝑒

−2𝛼𝑇
− 2𝛼𝑇𝑒

−𝛼𝑇
] ,

𝑞
22

=
1

2𝛼
3
[4𝑒
−𝛼𝑇

− 3 − 𝑒
−2𝛼𝑇

+ 2𝛼𝑇] ,

𝑞
23

= 𝑞
32

=
1

2𝛼
2
[𝑒
−2𝛼𝑇

+ 1 − 2𝑒
−𝛼𝑇

] ,

𝑞
33

=
1

2𝛼
[1 − 2𝑒

−2𝛼𝑇
] ,

(19)

where 𝛼 is the autocorrelation time constant.
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Equation (20) shows the self-adaptive adjusting method
of modified Rayleigh distribution variance, which can reflect
the change law of acceleration:

𝜎
2

𝑎𝑥
=

{{

{{

{

4 − 𝜋

𝜋
[𝑎
𝑥max − 𝑎

𝑥
(𝑘)]
2

=
4 − 𝜋

𝜋
[𝑎
𝑥max − ̂̈𝑥 (𝑘 | 𝑘 − 1)]

2

(𝑎
𝑥
> 0)

4 − 𝜋

𝜋
[𝑎
𝑥
(𝑘) − 𝑎

−𝑥max]
2

=
4 − 𝜋

𝜋
[̂̈𝑥 (𝑘 | 𝑘 − 1) − 𝑎

−𝑥max]
2

(𝑎
𝑥
< 0) ,

𝜎
2

𝑎𝑦
=

{{

{{

{

4 − 𝜋

𝜋
[𝑎
𝑦max − 𝑎

𝑦
(𝑘)]
2

=
4 − 𝜋

𝜋
[𝑎
𝑦max − ̂̈𝑦 (𝑘 | 𝑘 − 1)]

2

(𝑎
𝑦
> 0)

4 − 𝜋

𝜋
[𝑎
𝑦
(𝑘) − 𝑎

−𝑦max]
2

=
4 − 𝜋

𝜋
[̂̈𝑦 (𝑘 | 𝑘 − 1) − 𝑎

−𝑦max]
2

(𝑎
𝑦
< 0) .

(20)

The observation equation is

𝑍 (𝑘) = 𝐻 (𝑘)𝑋 (𝑘) + 𝑉 (𝑘) , (21)

where

𝐻 = [

1 0 0 0 0 0

0 0 0 1 0 0
]𝑍 (𝑘) = [

𝑥 (𝑘)

𝑦 (𝑘)
] . (22)

𝑉(𝑘) is the observation noise which is the Gaussian white
noise.

2.2.The Target Motion State Estimation Based on the Adaptive
Kalman Filter [22]. (1) The initial values of the state and
estimate covariance:

𝑋(0) = 0,

𝑃 (0) = 𝐼.

(23)

(2) Updated state estimate:

𝑍 (𝑘) = 𝐻 (𝑘)𝑋 (𝑘) + 𝑉 (𝑘) . (24)

(3) Optimal Kalman gain:

𝐾
𝑔
(𝑘)

= 𝑃 (𝑘 | 𝑘 − 1)𝐻
𝑇
(𝐻𝑃 (𝑘 | 𝑘 − 1)𝐻

𝑇
+ 𝑅)
−1

.

(25)

(4) Updated state estimate:

𝑋 (𝑘 | 𝑘) = 𝑋 (𝑘 | 𝑘 − 1)

+ 𝐾
𝑔
(𝑘) (𝑍 (𝑘) − 𝐻𝑋 (𝑘 | 𝑘 − 1)) .

(26)

(5) Updated estimate covariance:

𝑃 (𝑘 | 𝑘) = (𝐼 − 𝐾
𝑔
(𝑘)𝐻)𝑃 (𝑘 | 𝑘 − 1) . (27)

(6) Predicted state estimate:

𝑋(𝑘 | 𝑘 − 1) = 𝐹 (𝑘)𝑋 (𝑘 − 1 | 𝑘 − 1) . (28)

(7) The acceleration variances 𝜎2
𝑎𝑥

and 𝜎
2

𝑎𝑦
use (17) and

(18) and 𝑄(𝑘) uses (16).

(8) Predicted estimate covariance:

𝑃 (𝑘 | 𝑘 − 1) = 𝐹 (𝑘) 𝑃 (𝑘 − 1 | 𝑘 − 1) 𝐹
𝑇
(𝑘) + 𝑄 (𝑘) . (29)

(9) Return to (2) and continue the iteration.
When the mean of the modified Rayleigh distribution is

small, the next time the acceleration value is in a wide range,
which implies that the change of 𝑋(𝑘 | 𝑘) can be larger, so
the Kalman gain𝐾

𝑔
(𝑘) should be larger tomake the accuracy

of filtering results not decline. Conversely, when the mean of
the modified Rayleigh distribution is large, the next time the
acceleration value is in a small range, which implies that the
change of 𝑋(𝑘 | 𝑘) can be smaller, so the Kalman gain 𝐾

𝑔
(𝑘)

should be smaller.
From (18) and (20) it can be found that when the acceler-

ation limit values 𝐴max and 𝐴
−max are determined and if the

acceleration of the target changes in a small range, especially
around zero, the tracking performance changes with the
change of the process noise covariance matrix 𝑄. Therefore,
in order to ensure the tracking accuracy, the acceleration limit
values𝐴max and𝐴

−max cannot be very large. And if𝐴max and
𝐴
−max are too small, when the acceleration of target exceeds

the range, the filtering performance will be worse. So the
value of 𝐴max and 𝐴

−max cannot be too small or large.

3. Simulation

In tracking the status of target with different motions, there
are different measurement results when using two different
methods, the Kalman filter based on the CA model and
the adaptive Kalman filter based on the CS model. When
driving on the road, there are three kinds of motions,
uniform motion, uniform acceleration motion, and varying
acceleration motion, so these three simulation scenarios are
selected. And we compare the two measurement results as
follows.

Figure 3 shows the Gaussian white noise added in 𝑋 and
𝑌 direction in each simulation, in which the mean is 0 and
the variance is 1.

Sampling step is 0.1 s; sampling time is 40 s.

3.1. Uniform Moving Target. The position, velocity, and
acceleration estimation and the estimation error of uniform
moving target are as follows.
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Figure 4 shows the path of the uniform moving target,
including the actual value, the results of Kalman filtering
estimation based on CA model, and the results of adaptive
Kalman filtering estimation based on CS model.

In Figure 5(a), the RMSE of the position of the CAmodel
in𝑋 direction is 0.1119 and the RMSE of the position of the CS
model in𝑋 direction is 0.1854; the RMSE error of the position
of the CAmodel in 𝑌 direction is 0.1015 and the RMSE of the
position of the CS model in 𝑌 direction is 0.1212.

In Figure 5(b), the RMSE of the velocity of the CAmodel
in 𝑋 direction is 0.5429 and the RMSE of the velocity of the
CS model in 𝑋 direction is 0.7292; the RMSE of the velocity
of the CAmodel in𝑌 direction is 0.0935 and the RMSE of the
velocity of the CS model in 𝑌 direction is 0.0057.

In Figure 5(c), the RMSE of the acceleration of the
CA model in 𝑋 direction is 0.8933 and the RMSE of the
acceleration of the CS model in 𝑋 direction is 0.7017; the
RMSE of the acceleration of the CA model in 𝑌 direction is
0.5534 and the RMSE of the acceleration of the CS model in
𝑌 direction is 0.0498.

Figure 6 shows the trends of adaptive parameters 𝜎2
𝑎𝑥

and
𝜎
2

𝑎𝑦
.

3.2. Moving Target with Constant Acceleration. The accelera-
tion of the target in𝑋 direction is 3m/s and in 𝑌 direction is
0.3m/s.

The position, velocity, and acceleration estimation and
the estimation error of moving target with constant accelera-
tion are as follows.

Figure 7 shows the path of the moving target with
constant acceleration, including the actual value, the results
of Kalman filtering estimation based on CA model, and the
results of adaptive Kalman filtering estimation based on CS
model.

In Figure 8(a), the RMSE of the position of the CAmodel
in 𝑋 direction is 0.1197 and the RMSE of the position of the
CS model in 𝑋 direction is 0.1493; the RMSE of the position
of the CAmodel in𝑌 direction is 0.1090 and the RMSE of the
position of the CS model in 𝑌 direction is 0.1062.

In Figure 8(b), the RMSE of the velocity of the CAmodel
in 𝑋 direction is 0.2899 and RMSE of the velocity of the CS
model in 𝑋 direction is 0.3070; the RMSE of the velocity of
the CA model in 𝑌 direction is 0.1324 and the RMSE of the
velocity of the CS model in 𝑌 direction is 0.1222.

In Figure 8(c), the RMSE of the acceleration of the CA
model in𝑋 direction is 0.5742 and RMSE of the acceleration
of the CS model in 𝑋 direction is 0.5503; the RMSE of the
acceleration of the CAmodel in𝑌 direction is 0.0948 and the
RMSE of the acceleration of the CS model in 𝑌 direction is
0.0773.

Figure 9 shows the trends of adaptive parameters 𝜎2
𝑎𝑥

and
𝜎
2

𝑎𝑦
.

3.3. Moving Target with Variable Acceleration. The position,
velocity, and acceleration estimation and the estimation error
of moving target with variable acceleration are as follows.

Figure 10 shows the path of the moving target with
variable acceleration, including the actual value, the results
of Kalman filtering estimation based on CA model, and the
results of adaptive Kalman filtering estimation based on CS
model.

In Figure 11(a), the RMSE of the position of the CAmodel
in 𝑋 direction is 2.4554 and the RMSE of the position of the
CS model in 𝑋 direction is 0.2102; the RMSE of the position
of the CAmodel in 𝑌 direction is 1.9182 and the RMSE of the
position of the CS model in 𝑌 direction is 0.6944.

In Figure 11(b), the RMSE of the velocity of the CAmodel
in 𝑋 direction is 4.1254 and RMSE of the velocity of the CS
model in 𝑋 direction is 0.8365; the RMSE of the velocity of
the CA model in 𝑌 direction is 3.1801 and the RMSE of the
velocity of the CS model in 𝑌 direction is 1.5912.
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Figure 5: Comparison of motion state estimation of uniform moving target.
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In Figure 11(c), the RMSE of the acceleration of the CA
model in 𝑋 direction is 2.2319 and RMSE of the acceleration
of the CS model in 𝑋 direction is 1.5602; the RMSE of the
acceleration of the CAmodel in 𝑌 direction is 1.0856 and the
RMSE of the acceleration of the CS model in 𝑌 direction is
1.4816.

Table 1 shows the RMSE for CA andCSmodel in the three
simulation conditions. Figure 12 shows the trends of adaptive
parameters 𝜎2

𝑎𝑥
and 𝜎

2

𝑎𝑦
.

Regarding comprehensive comparison of these results, we
can conclude the following:

(1) When the target does uniform motion or constant
acceleration motion, the results of Kalman filtering
estimation on position, velocity, and acceleration
based on the CA model and the adaptive Kalman

Table 1: RMSE for CA and CS model.

CA model CS model
𝑋 𝑌 𝑋 𝑌

Moving target with constant velocity
Position 0.1119 0.1015 0.1854 0.1212
Velocity 0.5429 0.0935 0.7292 0.0057
Acceleration 0.8933 0.5534 0.7017 0.0498

Moving target with constant acceleration
Position 0.1197 0.1090 0.1493 0.1062
Velocity 0.2899 0.1324 0.3070 0.1222
Acceleration 0.5742 0.0948 0.5503 0.0773

Moving target with variable acceleration
Position 2.4554 1.9182 0.2102 0.6944
Velocity 4.1254 3.1801 0.8365 1.5912
Acceleration 2.2319 1.0856 1.5602 1.4816

filtering estimation on position, velocity, and acceler-
ation based on the CS model can quickly converge.
But the filtering estimation results of the former
are closer to the exact value. This is because of the
fact that, in the Kalman filtering estimation process,
when the system process noise covariance matrix 𝑄

is larger, the filtering estimation is more biased in
favor of the predicted value, which may cause the
estimation results to not follow the actual change;
when the observation noise covariance matrix 𝑅 is
larger, the filtering estimation is more inclined to the
observations, in which the observation noise filtering
effect will reduce. In terms of the adaptive Kalman
filtering algorithm based on the CS model, when
the acceleration limit values, 𝐴max and 𝐴

−max, are
determined, if the acceleration of the target changes
in a small range (especially near zero), the tracking
performance becomes worse as the system process
noise covariance matrix is larger, conversely higher
tracking performance.

(2) When the target does the varying acceleration
motion, the results of the Kalman filtering estimation
on position, velocity, and acceleration based on the
CA model are divergent, but that of the adaptive
Kalman filtering estimation based on CS model can
quickly converge and the errors are smaller.

4. Real Vehicle Test

Figure 13 shows the intelligent vehicle platform (Audi Q5)
that is equipped with the IBEO four-layer laser radar,
GPS/INS system, and industrial computer. Figure 14 shows
the target vehicle (Buick GL8) that is equipped with GPS/INS
system.

We used the GPS/INS system equipped on the intelligent
vehicle to measure the position and heading angle of the
radar operating and the IBEO radar to measure the relative
position between the target vehicle and the intelligent vehicle.
The GPS/INS system equipped on target vehicle recorded



Mathematical Problems in Engineering 9

0
500

1000
1500
2000
2500

0 5 10 15 20 25 30 35 40
−100

0

100

200

300

19.398 19.4 19.402 19.404

558.2
558.4
558.6
558.8

13.315 13.32

26.2

26.25

26.3

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40−0.5

0

0.5

1

0 5 10 15 20 25 30 35 40
−0.6
−0.4
−0.2

0
0.2
0.4

Time (s) Time (s)

X
 (m

)
Y

 (m
)

X
 er

ro
r (

m
)

Y
 er

ro
r (

m
)

The actual value
The results of Kalman filtering estimation based on CA model
The results of adaptive Kalman filtering estimation based on CS model

The actual value
The results of Kalman filtering estimation based on CA model
The results of adaptive Kalman filtering estimation based on CS model

(a) Position estimation and position estimation error

−50

0

50

100

150

−5

0

5

10

15

24.9 25

74

75

25 25.2
7.2

7.4

7.6

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
−1

0

1

2

3

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

Time (s) Time (s)

V
x

(m
/s

)
V
y

(m
/s

)

V
x

er
ro

r (
m

/s
)

V
y

er
ro

r (
m

/s
)

The actual value
The results of Kalman filtering estimation based on CA model
The results of adaptive Kalman filtering estimation based on CS model

The actual value
The results of Kalman filtering estimation based on CA model
The results of adaptive Kalman filtering estimation based on CS model

(b) Velocity estimation and velocity estimation error

−1
0
1
2
3
4

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

−1

0
1
2
3
4

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

Time (s) Time (s)

A
y

er
ro

r (
m

/s
2 )

A
x

er
ro

r (
m

/s
2 )

The actual value
The results of Kalman filtering estimation based on CA model
The results of adaptive Kalman filtering estimation based on CS model

The actual value
The results of Kalman filtering estimation based on CA model
The results of adaptive Kalman filtering estimation based on CS model

A
y

(m
/s

2 )
A

x
(m

/s
2 )

(c) Acceleration estimation and acceleration estimation error

Figure 8: Comparison of motion state estimation of moving target with constant acceleration.
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the absolute motion states, which we take as the accurate
motion state of the target vehicle. And the GPS/INS systems
equipped on both vehicles are Span-Cpt system that uses the
professional level OEMV technology in which the precision
can reach 0.01 meters.

We compared the algorithm introduced in this paper with
the Kalman filter based on CA model.

Sampling step is 0.1 s; sampling time is 55 s.
Sampling condition is as follows: the target vehicle moves

in front of the intelligent vehicle.
Figure 15 shows the path of the target vehicle, including

the actual value, the results of Kalman filtering estimation
based on CA model, and the results of adaptive Kalman
filtering estimation based on CS model.

In Figure 16(a), the RMSEof the position of theCAmodel
in 𝑋 direction is 1.8468 and the RMSE of the position of the
CS model in 𝑋 direction is 1.6330; the RMSE of the position
of the CAmodel in 𝑌 direction is 0.1728 and the RMSE of the
position of the CS model in 𝑌 direction is 0.1440.

In Figure 16(b), the RMSE of the velocity of the CAmodel
in 𝑋 direction is 3.8322 and RMSE of the velocity of the CS
model in 𝑋 direction is 2.1996; the RMSE of the velocity of
the CA model in 𝑌 direction is 0.4923 and the RMSE of the
velocity of the CS model in 𝑌 direction is 0.2345.

In Figure 16(c), the RMSE of the acceleration of the CA
model in𝑋 direction is 2.9796 and RMSE of the acceleration
of the CS model in 𝑋 direction is 1.3044; the RMSE of the
acceleration of the CAmodel in 𝑌 direction is 0.2808 and the
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Figure 11: Comparison of motion state estimation of moving target with variable acceleration.
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Figure 13: The intelligent vehicle platform.

Table 2: RMSE for CA and CS model.

CA model CS model
𝑋 𝑌 𝑋 𝑌

Position 1.8468 0.1728 1.6330 0.1440
Velocity 3.8322 0.4923 2.1996 0.2345
Acceleration 2.9796 0.2808 1.3044 0.2153

RMSE of the acceleration of the CS model in 𝑌 direction is
0.2153.

Table 2 shows the RMSE for CA and CS model in the real
vehicle test. Figure 17 shows the trends of adaptive parameters
𝜎
2

𝑎𝑥
and 𝜎

2

𝑎𝑦
.

Figures 16(a), 16(b), and 16(c) show that the error of the
position, velocity, and acceleration of the adaptive Kalman
filter based on the CS model is smaller than that of the
Kalman filter based on the CA model.

When the target runs on the road, the acceleration varies
with time, which is as the varying acceleration motion in
the simulation. Respectively, using Kalman filter based on
CA model and adaptive Kalman filter based on CS model to

Figure 14: The target vehicle platform.
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Figure 15: Target path.

estimate the position, velocity, and acceleration, the errors of
the latter are smaller.

5. Conclusion

The purpose of this paper is to estimate the motion state of
the maneuvering obstacle in front of the intelligent vehicle.
We used adaptive Kalman filter based on CS model which
can identify the target position, velocity, and acceleration in
real time through the sensor data with observation noise. In
this paper we built a vehicle experimental platform which
consists of an intelligent vehicle equipped with the laser
radar, GPS/INS, and so forth and a tracking target (obstacle
vehicle) equipped with inertial navigation system. And in
this paper, the motion modeling and filtering are based
on absolute motion in absolute coordinate by using the
GPS/INS, which can improve the accuracy by decreasing the
influence from the moving measuring bases. The simulation
and experiments showed that the adaptive Kalman filter
based on CS model can accurately estimate the target motion
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Figure 16: Comparison of motion state estimation.
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state when the targets are doing the uniformmotion, constant
acceleration motion, or varying acceleration motion.
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