570 research outputs found

    Three-dimensional endoscopic optical coherence tomography imaging of cervical inlet patch

    Get PDF
    A 30-year-old white man with established Barrett’s esophagus (BE) and continued symptoms of chronic severe heartburn, persistent cough, throat irritation, and asthma was referred for surveillance EGD at the VA Boston Healthcare System. During retraction of the endoscope, a pink circular lesion (A) was observed under white light endoscopy in the upper esophagus (spanning 20–22 cm from the incisors). Three-dimensional endoscopic optical coherence tomography (OCT) images were obtained of the region under direct visualization with white light by passing the probe through the standard accessory channel. An en face projection image (B) at 400-μm depth underneath the tissue surface showed columnar epithelium consistent with a cervical inlet patch (CIP) and surrounding normal squamous epithelium (SE). Cross-sectional OCT images along the probe pull-back direction (C) and the probe rotation direction (D and F) clearly demonstrated columnar and squamous epithelium in the CIP region and the surrounding esophagus, respectively. Biopsy specimens taken from the imaged lesion confirmed the finding of CIP. The OCT features matched representative hematoxylin and eosin histology (E and G). Both esophageal and extraesophageal symptoms responded to increased antacid therapy.United States. Veterans AdministrationNational Institutes of Health (U.S.) (Grant R01-CA75289-14)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)United States. Dept. of Defense. Medical Free Electron Laser Program (Contract FA9550-10-1-0551)MIT/Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship)National Science Council of Taiwan (Taiwan Merit Scholarship

    Proopiomelanocortin gene delivery induces apoptosis in melanoma through NADPH oxidase 4-mediated ROS generation

    Get PDF
    AbstractHypoxia in the tumor microenvironment triggers differential signaling pathways for tumor survival. In this study, we characterize the involvement of hypoxia and reactive oxygen species (ROS) generation in the antineoplastic mechanism of proopiomelanocortin (POMC) gene delivery in a mouse B16-F10 melanoma model in vivo and in vitro. Histological analysis revealed increased TUNEL-positive cells and enhanced hypoxic activities in melanoma treated with adenovirus encoding POMC (Ad-POMC) but not control vector. Because the apoptotic cells were detected mainly in regions distant from blood vessels, it was hypothesized that POMC therapy might render melanoma cells vulnerable to hypoxic insult. Using a hypoxic chamber or cobalt chloride (CoCl2), we showed that POMC gene delivery elicited apoptosis and caspase-3 activation in cultured B16-F10 cells only under hypoxic conditions. The apoptosis induced by POMC gene delivery was associated with elevated ROS generation in vitro and in vivo. Blocking ROS generation using the antioxidant N-acetyl-l-cysteine abolished the apoptosis and caspase-3 activities induced by POMC gene delivery and hypoxia. We further showed that POMC-derived melanocortins, including α-MSH, β-MSH, and ACTH, but not γ-MSH, contributed to POMC-induced apoptosis and ROS generation during hypoxia. To elucidate the source of ROS generation, application of the NADPH oxidase inhibitor diphenyleneiodonium attenuated α-MSH-induced apoptosis and ROS generation, implicating the proapoptotic role of NADPH oxidase in POMC action. Of the NADPH oxidase isoforms, only Nox4 was expressed in B16-F10 cells, and Nox4 was also elevated in Ad-POMC-treated melanoma tissues. Silencing Nox4 gene expression with Nox4 siRNA suppressed the stimulatory effect of α-MSH-induced ROS generation and cell apoptosis during hypoxia. In summary, we demonstrate that POMC gene delivery suppressed melanoma growth by inducing apoptosis, which was at least partly dependent on Nox4 upregulation

    Comparison of Tissue Architectural Changes between Radiofrequency Ablation and Cryospray Ablation in Barrett’s Esophagus Using Endoscopic Three-Dimensional Optical Coherence Tomography

    Get PDF
    Two main nonsurgical endoscopic approaches for ablating dysplastic and early cancer lesions in the esophagus have gained popularity, namely, radiofrequency ablation (RFA) and cryospray ablation (CSA). We report a uniquely suited endoscopic and near-microscopic imaging modality, three-dimensional (3D) optical coherence tomography (OCT), to assess and compare the esophagus immediately after RFA and CSA. The maximum depths of architectural changes were measured and compared between the two treatment groups. RFA was observed to induce 230~260  m depth of architectural changes after each set of ablations over a particular region, while CSA was observed to induce edema-like spongiform changes to ~640 μm depth within the ablated field. The ability to obtain micron-scale depth-resolved images of tissue structural changes following different ablation therapies makes 3D-OCT an ideal tool to assess treatment efficacy. Such information could be potentially used to provide real-time feedback for treatment dosing and to identify regions that need further retreatment.National Institutes of Health (U.S.) (Grant R01-CA75289-15)National Institutes of Health (U.S.) (Grant K99-EB010071-01A1)National Institutes of Health (U.S.) (Grant R44-CA101067-06)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)Medical Free Electron Laser Program (Contract FA9550-10-1-0551

    Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos)

    Get PDF
    Background Radiofrequency ablation (RFA) is an endoscopic technique used to eradicate Barrett's esophagus (BE). However, such ablation can commonly lead to neosquamous epithelium overlying residual BE glands not visible by conventional endoscopy and may evade detection on random biopsy samples. Objective To demonstrate the capability of endoscopic 3-dimensional optical coherence tomography (3D-OCT) for the identification and characterization of buried glands before and after RFA therapy. Design Cross-sectional study. Setting Single teaching hospital. Patients Twenty-six male and 1 female white patients with BE undergoing RFA treatment. Interventions 3D-OCT was performed at the gastroesophageal junction in 18 patients before attaining complete eradication of intestinal metaplasia (pre–CE-IM group) and in 16 patients after CE-IM (post–CE-IM group). Main Outcome Measurements Prevalence, size, and location of buried glands relative to the squamocolumnar junction. Results 3D-OCT provided an approximately 30 to 60 times larger field of view compared with jumbo and standard biopsy and sufficient imaging depth for detecting buried glands. Based on 3D-OCT results, buried glands were found in 72% of patients (13/18) in the pre–CE-IM group and 63% of patients (10/16) in the post–CE-IM group. The number (mean [standard deviation]) of buried glands per patient in the post–CE-IM group (7.1 [9.3]) was significantly lower compared with the pre–CE-IM group (34.4 [44.6]; P = .02). The buried gland size (P = .69) and distribution (P = .54) were not significantly different before and after CE-IM. Limitations A single-center, cross-sectional study comparing patients at different time points in treatment. Lack of 1-to-1 coregistered histology for all OCT data sets obtained in vivo. Conclusion Buried glands were frequently detected with 3D-OCT near the gastroesophageal junction before and after radiofrequency ablation.National Institutes of Health (U.S.) (Grant R01-CA75289-15)National Institutes of Health (U.S.) (Grant R44CA101067-06)National Institutes of Health (U.S.) (Grant R01-HL095717-03)National Institutes of Health (U.S.) (Grant R01-NS057476-05)National Institutes of Health (U.S.) (Grant K99-EB010071-01A1)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)United States. Air Force Office of Scientific Research. Medical Free Electron Laser Program (Contract FA9550-10-1-0551)Center for Integration of Medicine and Innovative Technolog

    Structural markers observed with endoscopic 3-dimensional optical coherence tomography correlating with Barrett's esophagus radiofrequency ablation treatment response

    Get PDF
    Background Radiofrequency ablation (RFA) is effective for treating Barrett's esophagus (BE) but often involves multiple endoscopy sessions over several months to achieve complete response. Objective Identify structural markers that correlate with treatment response by using 3-dimensional (3-D) optical coherence tomography (OCT; 3-D OCT). Design Cross-sectional. Setting Single teaching hospital. Patients Thirty-three patients, 32 male and 1 female, with short-segment (<3 cm) BE undergoing RFA treatment. Intervention Patients were treated with focal RFA, and 3-D OCT was performed at the gastroesophageal junction before and immediately after the RFA treatment. Patients were re-examined with standard endoscopy 6 to 8 weeks later and had biopsies to rule out BE if not visibly evident. Main Outcome Measurements The thickness of BE epithelium before RFA and the presence of residual gland-like structures immediately after RFA were determined by using 3-D OCT. The presence of BE at follow-up was assessed endoscopically. Results BE mucosa was significantly thinner in patients who achieved complete eradication of intestinal metaplasia than in patients who did not achieve complete eradication of intestinal metaplasia at follow-up (257 ± 60 μm vs 403 ± 86 μm; P < .0001). A threshold thickness of 333 μm derived from receiver operating characteristic curves corresponded to a 92.3% sensitivity, 85% specificity, and 87.9% accuracy in predicting the presence of BE at follow-up. The presence of OCT-visible glands immediately after RFA also correlated with the presence of residual BE at follow-up (83.3% sensitivity, 95% specificity, 90.6% accuracy). Limitations Single center, cross-sectional study in which only patients with short-segment BE were examined. Conclusion Three-dimensional OCT assessment of BE thickness and residual glands during RFA sessions correlated with treatment response. Three-dimensional OCT may predict responses to RFA or aid in making real-time RFA retreatment decisions in the future.Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship)United States. Dept. of Veterans Affairs. Boston Healthcare SystemNational Institutes of Health (U.S.) (Grant R01-CA75289-15)National Institutes of Health (U.S.) (Grant R44CA101067-06)National Institutes of Health (U.S.) (Grant K99-EB010071-01A1)United States. Air Force Office of Scientific Research (Grant FA9550-10-1-0063)United States. Air Force Office of Scientific Research. Medical Free Electron Laser Program (Grant FA9550-10-1-0551

    Changes in the expression of the Alzheimer's disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction

    Get PDF
    Mutations in the presenilin genes cause the majority of early-onset familial Alzheimer’s disease. Recently, presenilin mutations have been identified in patients with dilated cardiomyopathy (DCM), a common cause of heart failure and the most prevalent diagnosis in cardiac transplantation patients. However, the molecular mechanisms, by which presenilin mutations lead to either AD or DCM, are not yet understood. We have employed transgenic Drosophila models and optical coherence tomography imaging technology to analyze cardiac function in live adult Drosophila. Silencing of Drosophila ortholog of presenilins (dPsn) led to significantly reduced heart rate and remarkably age-dependent increase in end-diastolic vertical dimensions. In contrast, overexpression of dPsn increased heart rate. Either overexpression or silencing of dPsn resulted in irregular heartbeat rhythms accompanied by cardiomyofibril defects and mitochondrial impairment. The calcium channel receptor activities in cardiac cells were quantitatively determined via real-time RT-PCR. Silencing of dPsn elevated dIP[subscript 3]R expression, and reduced dSERCA expression; overexprerssion of dPsn led to reduced dRyR expression. Moreover, overexpression of dPsn in wing disc resulted in loss of wing phenotype and reduced expression of wingless. Our data provide novel evidence that changes in presenilin level leads to cardiac dysfunction, owing to aberrant calcium channel receptor activities and disrupted Wnt signaling transduction, indicating a pathogenic role for presenilin mutations in DCM pathogenesis.Cure Alzheimer’s FundNational Institutes of Health (U.S.) (Grant R01AG014713)National Institutes of Health (U.S.) (Grant R01MH60009)National Institutes of Health (U.S.) (Grant R01CA75289)National Institutes of Health (U.S.) (Grant R01HL095717)National Institutes of Health (U.S.) (Grant FA9550-07-1-0014

    Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells

    Get PDF
    We demonstrate photothermal optical coherence tomography (OCT) imaging in highly scattering human breast tissue ex vivo. A 120 kHz axial scan rate, swept-source phase-sensitive OCT system at 1300 nm was used to detect phase changes induced by 830 nm photothermal excitation of gold nanoshells. Localized phase modulation was observed 300–600 μm deep in scattering tissue using an excitation power of only 22 mW at modulation frequencies up to 20 kHz. This technique enables integrated structural and molecular-targeted imaging for cancer markers using nanoshells.National Institutes of Health (U.S.) (Grant Number R01- CA75289-13)United States. Air Force Office of Scientific Research (Contract Number FA9550-07-1-0014)MFELP (Contract Number FA9550-07-1-0101)Natural Sciences and Engineering Research Council of Canada (NSERC) Heritage Scholarship FundCenter for Integration of Medicine and Innovative TechnologyNational Science council of Taiwan. Taiwan Merit Scholarshi

    Custom Integrated Circuits

    Get PDF
    Contains reports on seven research projects.U.S. Air Force - Office of Scientific Research (Contract F49620-84-C-0004)National Science Foundation (Grant ECS81-18160)Defense Advanced Research Projects Agency (Contract NOO14-80-C-0622)National Science Foundation (Grant ECS83-10941
    corecore