46 research outputs found

    Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics

    Get PDF
    The sluggish kinetics of the oxygen reduction reaction (ORR) limit the efficiency of numerous oxygen-based energy conversion devices such as fuel cells and metal-air batteries. Among earth abundant catalysts, manganese-based oxides have the highest activities approaching that of precious metals. In this Review, we summarize and analyze literature findings to highlight key parameters that influence the catalysis of the ORR on manganese-based oxides, including the number of electrons transferred as well as specific and mass activities. These insights can help develop design guides for highly active ORR catalysts and shape future fundamental research to gain new knowledge regarding the molecular mechanism of ORR catalysis.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (award number DMR- 0819762)Skoltech-MIT CenterNational Science Foundation (U.S.). Graduate Research Fellowship (Grant no. DGE-1122374)United States. Department of Energy. Office of Basic Energy Sciences (contract no. DE-AC02- 98CH10886

    Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An

    Get PDF
    Manganese oxides with rich redox chemistry have been widely used in (electro)catalysis in applications of energy and environmental consequence. While they are ubiquitous in catalyzing the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), redox processes occurring on the surface of manganese oxides are poorly understood. We report valence changes at OER- and ORR-relevant voltages of a layered manganese oxide film prepared by electrodeposition. X-ray absorption spectra were collected in situ in O[subscript 2]-saturated 0.1 M KOH using inverse partial fluorescence yield (IPFY) at the Mn L[subscript 3,2]-edges and partial fluorescence yield (PFY) at the O K-edge. Overall, we found reversible yet hysteretic Mn redox and qualitatively reproducible spectral changes by Mn L[subscript 3,2]IPFY XAS. Oxidation to a mixed Mn[superscript 3+/4+] valence preceded the oxygen evolution at 1.65 V vs RHE, while manganese reduced below Mn[superscript 3+] and contained tetrahedral Mn[superscript 2+] during oxygen reduction at 0.5 V vs RHE. Analysis of the pre-edge in O K-edge XAS provided the Mn-O hybridization, which was highest for Mn[superscript 3+](e[subscript g][superscript 1]). Our study demonstrates that combined in situ experiments at the metal L- and oxygen K-edges are indispensable to identify both the active valence during catalysis and the hybridization with oxygen adsorbates, critical to the rational design of active catalysts for oxygen electrocatalysis.National Science Foundation (U.S.) (Grant DGE-1122374

    Distinct miRNAs associated with various clinical presentations of SARS-CoV-2 infection.

    Get PDF
    MicroRNAs (miRNAs) have been shown to play important roles in viral infections, but their associations with SARS-CoV-2 infection remain poorly understood. Here, we detected 85 differentially expressed miRNAs (DE-miRNAs) from 2,336 known and 361 novel miRNAs that were identified in 233 plasma samples from 61 healthy controls and 116 patients with COVID-19 using the high-throughput sequencing and computational analysis. These DE-miRNAs were associated with SASR-CoV-2 infection, disease severity, and viral persistence in the patients with COVID-19, respectively. Gene ontology and KEGG pathway analyses of the DE-miRNAs revealed their connections to viral infections, immune responses, and lung diseases. Finally, we established a machine learning model using the DE-miRNAs between various groups for classification of COVID-19 cases with different clinical presentations. Our findings may help understand the contribution of miRNAs to the pathogenesis of COVID-19 and identify potential biomarkers and molecular targets for diagnosis and treatment of SARS-CoV-2 infection

    Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries

    Get PDF
    Understanding the oxygen reduction reaction kinetics in the presence of Na ions and the formation mechanism of discharge product(s) is key to enhancing Na–O2 battery performance. Here we show NaO2 as the only discharge product from Na–O2 cells with carbon nanotubes in 1,2-dimethoxyethane from X-ray diffraction and Raman spectroscopy. Sodium peroxide dihydrate was not detected in the discharged electrode with up to 6000 ppm of H2O added to the electrolyte, but it was detected with ambient air exposure. In addition, we show that the sizes and distributions of NaO2 can be highly dependent on the discharge rate, and we discuss the formation mechanisms responsible for this rate dependence. Micron-sized (∼500 nm) and nanometer-scale (∼50 nm) cubes were found on the top and bottom of a carbon nanotube (CNT) carpet electrode and along CNT sidewalls at 10 mA/g, while only micron-scale cubes (∼2 μm) were found on the top and bottom of the CNT carpet at 1000 mA/g, respectively.Seventh Framework Programme (European Commission) (Marie Curie International Outgoing Fellowship, 2007-2013))National Science Foundation (U.S.) (MRSEC Program, award number DMR-0819762)Robert Bosch GmbH (Bosch Energy Research Network (BERN) Grant)China Clean Energy Research Center-Clean Vehicles Consortium (CERC-CVC) (award number DE-PI0000012)Skolkovo Institute of Science and Technology (Skoltech-MIT Center for Electochemical Energy Storage

    Activating oxygen chemistry on metal and metal oxides: design principles of electrochemical catalysts

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 93-98).Electrochemical energy storage and conversion devices are important for the application of sustainable clean energies in the next decades. However, the slow kinetics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) lead to great energy loss in many electrochemical energy devices, including polymer electrolyte membrane fuel cells (PEMFCs), water splitting electrolyzers, and rechargeable metal-air batteries, which hampers the development of new-energy applications such as electric vehicles. To increase the energy efficiency of ORR and OER processes, various catalysts have been studied for oxygen electrocatalysis, but they are still not active enough or not stable enough in developing commercial friendly electrochemical devices. In this work, systematic studies have been applied on two catalyst systems: Pt-metal (Pt-M) alloys for ORR and perovskite oxides for OER. The combination of electrochemical characterizations with transmission electron microscopy (TEM) techniques provides deeper insights on how the basic physical and chemical properties could influence the stability and activity of the catalysts. For Pt-M ORR catalysts, it is found that using transition metal with more positive dissolution potential or forming protective Pt-rich shell by mild acid treatment can improve their stability in acid electrolyte. While for perovskite oxide OER catalysts, it is found that a closer distance between O 2p-band and Fermi level leads to higher activity but lower stability at pH 7, due to the activation of lattice oxygen sites. Moreover, with the help of environmental TEM techniques, structural oscillations are observed on perovskite oxides in the presence of water and electron radiation, caused by the oxygen evolution after water uptake into the oxide lattice. Such structural oscillation is greatly suppressed if the formation and mobility of lattice oxygen vacancy is hampered. The various new activity and stability descriptors for oxygen electrocatalysis found in this work not only provided practical guidelines for designing new ORR or OER catalysts, but also improved our fundamental understandings of the interactions between catalysts and electrolyte.by Binghong Han.Ph. D

    Data Avalability.xlsx

    No full text
    Original data of Fig. 1 to Fig. 5 in the Nature Chemistry paper entitled "Activating lattice oxygen redox reactions in metal oxides to catalyze oxygen evolution". Authors are:<div><br></div><div>Alexis GRIMAUD<sup>1,‡</sup>, Oscar DIAZ-MORALES<sup>2</sup>, Binghong HAN<sup>3</sup>, Wesley T. HONG<sup>3</sup>, Yueh-Lin LEE<sup>1,4</sup>, Livia GIORDANO<sup>4,5</sup>, Kelsey A. STOERZINGER<sup> 3</sup>, Marc T.M. KOPER<sup>2</sup>, Yang SHAO-HORN<sup>*1,3,4</sup> <p><br></p> <p><sup>1</sup>Department of Mechanical Engineering, <sup>3</sup>Department of Materials Science and Engineering, <sup>4</sup>Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States</p> <p><sup>2</sup>Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands</p> <p><sup>5</sup>Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Milano, Italy</p> <p><sup>‡</sup>Current address: FRE 3677 “Chimie du Solide et Energie,” Collège de France, 75231 Paris Cedex 05, France. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France.</p> p.p1 {margin: 0.0px 0.0px 10.0px 0.0px; text-align: center; font: 12.0px 'Times New Roman'} p.p2 {margin: 0.0px 0.0px 10.0px 0.0px; font: 12.0px 'Times New Roman'; min-height: 15.0px} p.p3 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: center; font: 12.0px 'Times New Roman'} </div

    Evaluating the impact of setting delineators in tunnels based on drivers' visual characteristics.

    No full text
    Poor visual conditions in tunnels can easily cause traffic accidents, and it is difficult for emergency services to reach these areas. As an economical and effective visual guiding device, delineators have attracted wide attention. Based on the actual alignment of the Qinling Mountain No.1, No.2 and No.3 tunnels of the G5 Expressway in Xi'an City (Shaanxi Province, China), this paper designs a simulation experiment. Through a simulator study and a questionnaire survey, this paper discusses how delineators affect drivers' visual characteristics (including fixation area and pupil size) in different settings and with different road alignments. Twenty-five subjects participated in this research. The results show that setting delineators in tunnels can continuously guide drivers' vision and attract their attention to focus on the pavement. Compared with setting only pavement delineators, setting wall delineators and pavement delineators together can provide better guiding effects and ensure driving safety in both straight and curved sections. In addition, when driving in tunnels equipped with delineators, especially tunnels with both wall delineators and pavement delineators, the participants exhibited a smaller pupil diameter and lower pupil diameter change rate. In terms of the relationship between pupil size and road alignment, the results indicated that regardless of what type of delineator was used, the drivers exhibited the smallest pupil size and lowest pupil change rate when driving on the straight section compared with the curved sections
    corecore