310 research outputs found

    Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain

    Get PDF
    There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-C1 cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatpla4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases

    Lack of antidepressant effects of burst-suppressing isoflurane anesthesia in adult male Wistar outbred rats subjected to chronic mild stress

    Get PDF
    Post-ictal emergence of slow wave EEG (electroencephalogram) activity and burst-suppression has been associated with the therapeutic effects of the electroconvulsive therapy (ECT), indicating that mere “cerebral silence” may elicit antidepressant actions. Indeed, brief exposures to burst-suppressing anesthesia has been reported to elicit antidepressant effects in a subset of patients, and produce behavioral and molecular alterations, such as increased expression of brain-derived neurotrophic factor (BDNF), connected with antidepressant responses in rodents. Here, we have further tested the cerebral silence hypothesis by determining whether repeated exposures to isoflurane anesthesia reduce depressive-like symptoms or influence BDNF expression in male Wistar outbred rats (Crl:WI(Han)) subjected to chronic mild stress (CMS), a model which is responsive to repeated electroconvulsive shocks (ECS, a model of ECT). Stress-susceptible, stress-resilient, and unstressed rats were exposed to 5 doses of isoflurane over a 15-day time period, with administrations occurring every third day. Isoflurane dosing is known to reliably produce rapid EEG burst-suppression (4% induction, 2% maintenance; 15 min). Antidepressant and anxiolytic effects of isoflurane were assessed after the first, third, and fifth drug exposure by measuring sucrose consumption, as well as performance on the open field and the elevated plus maze tasks. Tissue samples from the medial prefrontal cortex and hippocampus were collected, and levels of BDNF (brain-derived neurotrophic factor) protein were assessed. We find that isoflurane anesthesia had no impact on the behavior of stress-resilient or anhedonic rats in selected tests; findings which were consistent—perhaps inherently related—with unchanged levels of BDNF.Peer reviewe

    Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective

    Get PDF
    Objective: Neonatal seizures are the most frequent type of neurological emergency in newborn infants, often being a consequence of prolonged perinatal asphyxia. Phenobarbital is currently the most widely used antiseizure drug for treatment of neonatal seizures, but fails to stop them in similar to 50% of cases. In a neonatal hypoxia-only model based on 11-day-old (P11) rats, the NKCC1 inhibitor bumetanide was reported to potentiate the antiseizure activity of phenobarbital, whereas it was ineffective in a human trial in neonates. The aim of this study was to evaluate the effect of clinically relevant doses of bumetanide as add-on to phenobarbital on neonatal seizures in a noninvasive model of birth asphyxia in P11 rats, designed for better translation to the human term neonate. Methods: Intermittent asphyxia was induced for 30 minutes by exposing the rat pups to three 7 + 3-minute cycles of 9% and 5% O-2 at constant 20% CO2. Drug treatments were administered intraperitoneally either before or immediately after asphyxia. Results: All untreated rat pups had seizures within 10 minutes after termination of asphyxia. Phenobarbital significantly blocked seizures when applied before asphyxia at 30 mg/kg but not 15 mg/kg. Administration of phenobarbital after asphyxia was ineffective, whereas midazolam (0.3 or 1 mg/kg) exerted significant antiseizure effects when administered before or after asphyxia. In general, focal seizures were more resistant to treatment than generalized convulsive seizures. Bumetanide (0.3 mg/kg) alone or in combination with phenobarbital (15 or 30 mg/kg) exerted no significant effect on seizure occurrence. Significance: The data demonstrate that bumetanide does not increase the efficacy of phenobarbital in a model of birth asphyxia, which is consistent with the negative data of the recent human trial. The translational data obtained with the novel rat model of birth asphyxia indicate that it is a useful tool to evaluate novel treatments for neonatal seizures.Peer reviewe

    Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy

    Get PDF
    Increased neuronal expression of the Na-K-2Cl cotransporter NKCC1 has been implicated in the generation of seizures and epilepsy. However, conclusions from studies on the NKCC1-specific inhibitor, bumetanide, are equivocal, which is a consequence of the multiple potential cellular targets and poor brain penetration of this drug. Here, we used Nkcc1 knockout (KO) and wildtype (WT) littermate control mice to study the ictogenic and epileptogenic effects of intrahippocampal injection of kainate. Kainate (0.23 ?g in 50 nl) induced limbic status epilepticus (SE) in both KO and WT mice with similar incidence, latency to SE onset, and SE duration, but the number of intermittent generalized convulsive seizures during SE was significantly higher in Nkcc1 KO mice, indicating increased SE severity. Following SE, spontaneous recurrent seizures (SRS) were recorded by continuous (24/7) video/EEG monitoring at 0-1, 4-5, and 12-13 weeks after kainate, using depth electrodes in the ipsilateral hippocampus. Latency to onset of electrographic SRS and the incidence of electrographic SRS were similar in WT and KO mice. However, the frequency of electrographic seizures was lower whereas the frequency of electroclinical seizures was higher in Nkcc1 KO mice, indicating a facilitated progression from electrographic to electroclinical seizures during chronic epilepsy, and a more severe epileptic phenotype, in the absence of NKCC1. The present findings suggest that NKCC1 is dispensable for the induction, progression and manifestation of epilepsy, and they do not support the widely held notion that inhibition of NKCC1 in the brain is a useful strategy for preventing or modifying epilepsy.Peer reviewe

    "What's (the) Matter?", A Show on Elementary Particle Physics with 28 Demonstration Experiments

    Full text link
    We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published. Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid of a caretaker travel back in time to understand the fundamental nature of matter. They visit Rutherford and Geiger in Manchester around 1911, who recount their famous experiment on the nucleus and show how particle detectors work. They travel forward in time to meet Lawrence at Berkeley around 1950, teaching them about the how and why of accelerators. Next, they visit Wu at DESY, Hamburg, around 1980, who explains the strong force. They end up in the LHC tunnel at CERN, Geneva, Switzerland in 2012. Two experimentalists tell them about colliders and our heroes watch live as the Higgs boson is produced and decays. The show was presented in English at Oxford University and University College London, as well as Padua University and ICTP Trieste. It was 1st performed in German at the Deutsche Museum, Bonn (5/'14). The show has eleven speaking parts and involves in total 20 people.Comment: 113 pages, 88 figures. An up to date version of the paper with high resolution pictures can be found at http://www.th.physik.uni-bonn.de/People/dreiner/Downloads/. In v2 the acknowledgements and a citation are correcte

    Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti seizure efficacy

    Get PDF
    Correction Volume: 143 Pages: 349-350 DOI: 10.1016/j.neuropharm.2018.10.012Based on the potential role of Na-K-Cl cotransporters (NKCCs) in epileptic seizures, the loop diuretic bumetanide, which blocks the NKCC1 isoforms NKCC1 and NKCC2, has been tested as an adjunct with phenobarbital to suppress seizures. However, because of its physicochemical properties, bumetanide only poorly penetrates through the blood-brain barrier. Thus, concentrations needed to inhibit NKCC1 in hippocampal and neocortical neurons are not reached when using doses (0.1-0.5 mg/kg) in the range of those approved for use as a diuretic in humans. This prompted us to search for a bumetanide derivative that more easily penetrates into the brain. Here we show that bumepamine, a lipophilic benzylamine derivative of bumetanide, exhibits much higher brain penetration than bumetanide and is more potent than the parent drug to potentiate phenobarbital's anticonvulsant effect in two rodent models of chronic difficult-to-treat epilepsy, amygdala kindling in rats and the pilocarpine model in mice. However, bumepamine suppressed NKCC1-dependent giant depolarizing potentials (GDPs) in neonatal rat hippocampal slices much less effectively than bumetanide and did not inhibit GABA-induced Ca2+ transients in the slices, indicating that bumepamine does not inhibit NKCC1. This was substantiated by an oocyte assay, in which bumepamine did not block NKCC1a and NKCC1b after either extra- or intracellular application, whereas bumetanide potently blocked both variants of NKCC1. Experiments with equilibrium dialysis showed high unspecific tissue binding of bumetanide in the brain, which, in addition to its poor brain penetration, further reduces functionally relevant brain concentrations of this drug. These data show that CNS effects of bumetanide previously thought to be mediated by NKCC1 inhibition can also be achieved by a close derivative that does not share this mechanism. Bumepamine has several advantages over bumetanide for CNS targeting, including lower diuretic potency, much higher brain permeability, and higher efficacy to potentiate the anti-seizure effect of phenobarbital.Peer reviewe
    • …
    corecore