56 research outputs found

    Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

    Get PDF
    BACKGROUND Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. METHODS Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with 157Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. RESULTS The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. CONCLUSIONS Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in 157Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy

    Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background and Objective</p> <p>Exposure to ambient particles has been shown to be responsible for cardiovascular effects, especially in elderly with cardiovascular disease. The study assessed the association between deceleration capacity (DC) as well as heart rate variability (HRV) and ambient particulate matter (PM) in patients with coronary artery disease (CAD).</p> <p>Methods</p> <p>A prospective study with up to 12 repeated measurements was conducted in Erfurt, Germany, between October 2000 and April 2001 in 56 patients with physician-diagnosed ischemic heart disease, stable angina pectoris or prior myocardial infarction at an age of at least 50 years. Twenty-minute ECG recordings were obtained every two weeks and 24-hour ECG recordings every four weeks. Exposure to PM (size range from 10 nm to 2.5 μm), and elemental (EC) and organic (OC) carbon was measured. Additive mixed models were used to analyze the association between PM and ECG recordings.</p> <p>Results</p> <p>The short-term recordings showed decrements in the high-frequency component of HRV as well as in RMSSD (root-mean-square of successive differences of NN intervals) in association with increments in EC and OC 0-23 hours prior to the recordings. The long-term recordings revealed decreased RMSSD and pNN50 (% of adjacent NN intervals that differed more than 50 ms) in association with EC and OC 24-47 hours prior to the recordings. In addition, highly significant effects were found for DC which decreased in association with PM<sub>2.5</sub>, EC and OC concurrent with the ECG recordings as well as with a lag of up to 47 hours.</p> <p>Conclusions</p> <p>The analysis showed significant effects of ambient particulate air pollution on DC and HRV parameters reflecting parasympathetic modulation of the heart in patients with CAD. An air pollution-related decrease in parasympathetic tone as well as impaired heart rate deceleration capacity may contribute to an increased risk for cardiac morbidity and sudden cardiac death in vulnerable populations.</p

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)

    Post-Operative Functional Outcomes in Early Age Onset Rectal Cancer

    Get PDF
    Background: Impairment of bowel, urogenital and fertility-related function in patients treated for rectal cancer is common. While the rate of rectal cancer in the young (&lt;50 years) is rising, there is little data on functional outcomes in this group. Methods: The REACCT international collaborative database was reviewed and data on eligible patients analysed. Inclusion criteria comprised patients with a histologically confirmed rectal cancer, &lt;50 years of age at time of diagnosis and with documented follow-up including functional outcomes. Results: A total of 1428 (n=1428) patients met the eligibility criteria and were included in the final analysis. Metastatic disease was present at diagnosis in 13%. Of these, 40% received neoadjuvant therapy and 50% adjuvant chemotherapy. The incidence of post-operative major morbidity was 10%. A defunctioning stoma was placed for 621 patients (43%); 534 of these proceeded to elective restoration of bowel continuity. The median follow-up time was 42 months. Of this cohort, a total of 415 (29%) reported persistent impairment of functional outcomes, the most frequent of which was bowel dysfunction (16%), followed by bladder dysfunction (7%), sexual dysfunction (4.5%) and infertility (1%). Conclusion: A substantial proportion of patients with early-onset rectal cancer who undergo surgery report persistent impairment of functional status. Patients should be involved in the discussion regarding their treatment options and potential impact on quality of life. Functional outcomes should be routinely recorded as part of follow up alongside oncological parameters

    Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

    Get PDF
    BACKGROUND Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. METHODS Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with 157Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. RESULTS The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. CONCLUSIONS Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in 157Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy

    The role of synaptic biomarkers in the spectrum of neurodegenerative diseases

    No full text
    Introduction: The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). Areas covered: Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. Expert opinion: CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD
    corecore