28 research outputs found

    High temporal resolution sampling reveals reef fish settlement is highly clustered

    Get PDF
    Coral reef fish larvae settle on reefs predominantly at night around the new-moon phase, after an early developmental period spent in the pelagic environment. Most sampling is conducted across whole nights, and any studies that have examined the frequency of arrival within nights have typically been limited to coarse sampling time scales of 1–5 h. Here, we present results for arrival numbers of fish caught between dusk and midnight from light traps sampled every 15 min at an Indonesian coral reef, providing the finest temporal resolution for this type of study to date. A spatial analysis by distance indices analysis, adapted to temporal data, revealed clustering of reef arrival times for many species, with an increase in catches immediately after dusk dropping off towards midnight. Importantly, the timing of clusters differed among species, indicating that different factors determine the timing of arrival among taxa. Our results support the hypothesis that larval behaviour influences the timing of arrival at a coral reef for different fish species

    A biophysical perspective on dispersal and the geography of evolution in marine and terrestrial systems

    No full text
    The fluid mechanics of marine and terrestrial systems are surprisingly similar at many spatial and temporal scales. Not surprisingly, the dispersal of organisms that float, swim or fly is influenced by the fluid environments of air and seawater. Nonetheless, it has been argued repeatedly that the geography of evolution differs fundamentally between marine and terrestrial taxa. Might this view emanate from qualitative contrasts between the pelagic ocean and terrestrial land conflated by anthropocentric perception of within- and between-realm variation? We draw on recent advances in biogeography to identify two pairs of biophysically similar marine and terrestrial settings—(i) aerial and marine microplankton and (ii) true islands and brackish seawater lakes—which have similar geographies of evolution. Commonalities at these scales, the largest and smallest biogeographic scales, delimit the geographical extents that can possibly characterize evolution in the remaining majority of species. The geographies of evolution therefore differ statistically, not fundamentally, between marine and terrestrial systems. Comparing the geography of evolution in diverse non-microplanktonic and non-island species from a biophysical perspective is an essential next step for quantifying precisely how marine and terrestrial systems differ and is an important yet under-explored avenue of macroecology
    corecore