28 research outputs found
High-throughput quantification of the effect of DMSO on the viability of lung and breast cancer cells using an easy-to-use spectrophotometric trypan blue-based assay
One of the main aspects investigated in potential therapeutic compounds is their effect on cells viability and proliferative ability. Although various methods have been developed to investigate these aspects, these methods present with shortcomings in terms of either cost, availability, accuracy, precision, or throughput. This study describes a simple, economic, reproducible, and high-throughput assay to quantify cell death and proliferation. In this assay, adherent cells are fixed, stained with trypan blue, and measured for trypan blue internalization using a spectrophotometric absorbance plate reader. Corresponding cell counts to the absorbance measurements are extrapolated from a standard curve. This assay was used to measure the effect of dimethyl sulfoxide (DMSO) on the viability of breast and lung cancer cells. Decrease in cell count associated with the increase in DMSO percentage and exposure time. The assay’s results closely correlated with the conventional trypan blue exclusion assay (Pearson correlation coefficient (r) > 0.99; p < 0.0001), but with higher precision. The assay developed in this study can be used for various applications such as optimization, cell treatment investigations, proliferation, and cytotoxicity studies
Enriched transcriptome analysis of laser capture microdissected populations of single cells to investigate intracellular heterogeneity in immunostained FFPE sections
To investigate intracellular heterogeneity, cell capture of particular cell populations followed by transcriptome analysis has been highly effective in freshly isolated tissues. However, this approach has been quite challenging in immunostained formalin-fixed paraffin-embedded (FFPE) sections. This study aimed at combining the standard pathology techniques, immunostaining and laser capture microdissection, with whole RNA-sequencing and bioinformatics analysis to characterize FFPE breast cancer cell populations with heterogeneous expression of progesterone receptor (PR). Immunocytochemical analysis revealed that 60% of MCF-7 cells admixture highly express PR. Immunocytochemistry-based targeted RNA-seq (ICC-RNAseq) and in silico functional analysis revealed that the PR-high cell population is associated with upregulation in transcripts implicated in immunomodulatory and inflammatory pathways (e.g. NF-κB and interferon signaling). In contrast, the PR-low cell population is associated with upregulation of genes involved in metabolism and mitochondrial processes as well as EGFR and MAPK signaling. These findings were cross-validated and confirmed in FACS-sorted PR high and PR-low MCF-7 cells and in MDA-MB-231 cells ectopically overexpressing PR. Significantly, ICC-RNAseq could be extended to analyze samples captured at specific spatio-temporal states to investigate gene expression profiles using diverse biomarkers. This would also facilitate our understanding of cell population-specific molecular events driving cancer and potentially other diseases
Systems Immunology Analysis Reveals the Contribution of Pulmonary and Extrapulmonary Tissues to the Immunopathogenesis of Severe COVID-19 Patients
As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues
A Secure Fog-based Platform for SCADA-based IoT Critical Infrastructure
The rapid proliferation of Internet of Things (IoT) devices, such as smart meters and water valves, into industrial critical infrastructures and control systems has put stringent performance and scalability requirements on modern Supervisory Control and Data Acquisition (SCADA) systems. While cloud computing has enabled modern SCADA systems to cope with the increasing amount of data generated by sensors, actuators and control devices, there has been a growing interest recently to deploy edge datacenters in fog architectures to secure low-latency and enhanced security for mission-critical data. However, fog security and privacy for SCADA-based IoT critical infrastructures remains an under-researched area. To address this challenge, this contribution proposes a novel security “toolbox” to reinforce the integrity, security, and privacy of SCADA-based IoTcritical infrastructure at the fog layer. The toolbox incorporates a key feature: a cryptographic-based access approach to the cloud services using identity-based cryptography and signature schemes at the fog layer. We present the implementation details of a prototype for our proposed Secure Fog-based Platform (SeFoP) and provide performance evaluation results to demonstrate the appropriateness of the proposed platform in a real-world scenario. These results can pave the way towards the development of more secured and trusted SCADA-based IoT critical infrastructure, which is essential to counter cyber threats against next-generation critical infrastructure and industrial control systems. The results from the experiments demonstrate a superior performance of SeFoP, which is around 2.8 seconds when adding 5 virtual machines (VMs), 3.2 seconds when adding 10 VMs, and 112 seconds when adding 1000 VMs compared to Multi-Level user Access Control (MLAC) platform
The FGF-21 genetic variants rs838133 and rs838145 are associated with high salt intake in the Emirati population
Food predilection is linked to variants in the hepatokine “Fibroblast Growth Factor-21” gene (FGF21); with rs838133 linked to the sweet tooth in Caucasians. The effect of FGF21 variants on food intake is still unclear in other populations. A cohort of 196 healthy Emirati subjects was investigated [age: 30.34 ± 9.75yrs (44.4% males)]. The FGF21 rs838133 and rs838145 were genotyped. The daily intake was calculated based on a 61-item food frequency questionnaire. Multivariate analysis was performed using in house R script that implements two-way unsupervised hierarchical clustering to detect the association of the studied single-nucleotide polymorphisms (SNPs) and related SNPs in linkage disequilibrium, using data from the 1000 genome project. Both SNPs were in Hardy-Weinberg Equilaribium (HWE). BMI positively correlated with age (p = 0.002), but not with caloric intake. Salt intake was significantly higher in subjects homozygous (A: rs838133) and (G:rs838145),(p = 0.03 and 0.01, respectively). An interaction was observed between both SNPs; significantly associated with high salt intake. Using publicly available data, both SNPs fall within a region transmitted in Iberians which has a profile closely similar to Caucasians, but far from Chinese population. In conclusion, the minor alleles of FGF21 rs838145 and rs838133 are associated with high salt intake in Emiratis and may suggest neuro-metabolic link to dietary preference across different populations
Socially and biologically inspired computing for self-organizing communications networks
The design and development of future communications networks call for a careful examination of biological and social systems. New technological developments like self-driving cars, wireless sensor networks, drones swarm, Internet of Things, Big Data, and Blockchain are promoting an integration process that will bring together all those technologies in a large-scale heterogeneous network. Most of the challenges related to these new developments cannot be faced using traditional approaches, and require to explore novel paradigms for building computational mechanisms that allow us to deal with the emergent complexity of these new applications. In this article, we show that it is possible to use biologically and socially inspired computing for designing and implementing self-organizing communication systems. We argue that an abstract analysis of biological and social phenomena can be made to develop computational models that provide a suitable conceptual framework for building new networking technologies: biologically inspired computing for achieving efficient and scalable networking under uncertain environments; socially inspired computing for increasing the capacity of a system for solving problems through collective actions. We aim to enhance the state-of-the-art of these approaches and encourage other researchers to use these models in their future work
Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.
Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2
Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae
Abstract: Leprosy continues to be the belligerent public health hazard for the causation of high disability and eventual morbidity cases with stable prevalence rates, even with treatment by the on-going multidrug therapy (MDT). Today, dapsone (DDS) resistance has led to fear of leprosy in more unfortunate people of certain developing countries. Herein, DDS was chemically conjugated with five phytochemicals independently as dapsone-phytochemical conjugates (DPCs) based on azo-coupling reaction. Possible biological activities were verified with computational chemistry and quantum mechanics by molecular dynamics simulation program before chemical synthesis and spectral characterizations viz., proton-HNMR, FTIR, UV and LC-MS. The in vivo antileprosy activity was monitored using the ‘mouse-foot-pad propagation method’, with WHO recommended concentration 0.01% mg/kg each DPC for 12 weeks, and the host-toxicity testing of the active DPC4 was seen in cultured-human-lymphocytes in vitro. One-log bacilli cells in DDS-resistant infected mice footpads decreased by the DPC4, and no bacilli were found in the DDS-sensitive mice hind pads. Additionally, the in vitro host toxicity study also confirmed that the DCP4 up to 5,000 mg/L level was safety for oral administration, since a minor number of dead cells were found in red color under a fluorescent microscope. Several advanced bioinformatics tools could help locate the potential chemical entity, thereby reducing the time and resources required for in vitro and in vitro tests. DPC4 could be used in place of DDS in MDT, evidenced from in vivo antileprosy activity and in vitro host toxicity study
Hypertrophic scarring in cleft lip repair: a comparison of incidence among ethnic groups
Ali M Soltani, Cameron S Francis, Arash Motamed, Ashley L Karatsonyi, Jeffrey A Hammoudeh, Pedro A Sanchez-Lara, John F Reinisch, Mark M UrataDivision of Plastic and Maxillofacial Surgery at Children&#39;s Hospital Los Angeles, CA, USA; The Division of Plastic and Reconstructive Surgery at the Keck School of Medicine of the University of Southern California, Los Angeles, CA, USABackground: Although hypertrophic scar (HTS) formation following cleft lip repair is relatively common, published rates vary widely, from 1% to nearly 50%. The risk factors associated with HTS formation in cleft patients are not well characterized. The primary aim of this retrospective study of 180 cleft lip repairs is to evaluate the frequency of postoperative HTS among various ethnic groups following cleft lip repair.Methods: A retrospective chart view of patients undergoing primary cleft lip repair over a 16-year period (1990&ndash;2005) by the senior surgeon was performed. The primary outcome was the presence of HTS at 1 year postoperatively. Bivariate analysis and multivariable logistic regression were used to evaluate potential risk factors for HTS, including ethnicity, type and laterality of cleft, and gender.Results: One hundred and eighty patients who underwent cleft lip repair were included in the study. The overall rate of postoperative HTS formation was 25%. Ethnicity alone was found to be an independent predictor of HTS formation. Caucasian patients had the lowest rate of HTS formation (11.8%) and were used as the reference group. HTS rates were significantly higher in the other ethnicities, 32.2% in Hispanic patients (odds ratio [OR]: 3.51; 95% confidence interval [CI]: 1.53&ndash;8.85), and 36.3% for Asian patients (OR 4.27; 95% CI: 1.36&ndash;13.70). Sex, cleft type, and cleft laterality were not associated with increased rates of HTS.Conclusions: Differences in ethnic makeup of respective patient populations may be a major factor influencing the wide variability of reported HTS rates. Consideration should be given to potential prophylactic treatments for HTS in susceptible ethnic populations.Keywords: cleft lip, hypertrophic scarring, ethnicity, epidemiolog