14,620 research outputs found
The AFGL absolute gravity program
A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements
The Trapped Polarized Fermi Gas at Unitarity
We consider population-imbalanced two-component Fermi gases under external
harmonic confinement interacting through short-range two-body potentials with
diverging s-wave scattering length. Using the fixed-node diffusion Monte Carlo
method, the energies of the "normal state" are determined as functions of the
population-imbalance and the number of particles. The energies of the trapped
system follow, to a good approximation, a universal curve even for fairly small
systems. A simple parameterization of the universal curve is presented and
related to the equation of state of the bulk system.Comment: 4 pages, 2 tables, 2 figure
The maximum density droplet to lower density droplet transition in quantum dots
We show that, Landau level mixing in two-dimensional quantum dot wave
functions can be taken into account very effectively by multiplying the exact
lowest Landau level wave functions by a Jastrow factor which is optimized by
variance minimization. The comparison between exact diagonalization and fixed
phase diffusion Monte Carlo results suggests that the phase of the many-body
wave functions are not affected much by Landau level mixing. We apply these
wave functions to study the transition from the maximum density droplet state
(incipient integer quantum Hall state with angular momentum L=N(N-1)/2) to
lower density droplet states (L>N(N-1)/2).Comment: 8 pages, 5 figures, accepted for publication in Phys. Rev.
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
Evaluating similarity between graphs is of major importance in several
computer vision and pattern recognition problems, where graph representations
are often used to model objects or interactions between elements. The choice of
a distance or similarity metric is, however, not trivial and can be highly
dependent on the application at hand. In this work, we propose a novel metric
learning method to evaluate distance between graphs that leverages the power of
convolutional neural networks, while exploiting concepts from spectral graph
theory to allow these operations on irregular graphs. We demonstrate the
potential of our method in the field of connectomics, where neuronal pathways
or functional connections between brain regions are commonly modelled as
graphs. In this problem, the definition of an appropriate graph similarity
function is critical to unveil patterns of disruptions associated with certain
brain disorders. Experimental results on the ABIDE dataset show that our method
can learn a graph similarity metric tailored for a clinical application,
improving the performance of a simple k-nn classifier by 11.9% compared to a
traditional distance metric.Comment: International Conference on Medical Image Computing and
Computer-Assisted Interventions (MICCAI) 201
Dipolar Bose-Einstein condensates with dipole-dependent scattering length
We consider a Bose-Einstein condensate of polar molecules in a harmonic trap,
where the effective dipole may be tuned by an external field. We demonstrate
that taking into account the dependence of the scattering length on the dipole
moment is essential to reproducing the correct energies and for predicting the
stability of the condensate. We do this by comparing Gross-Pitaevskii
calculations with diffusion Monte Carlo calculations. We find very good
agreement between the results obtained by these two approaches once the dipole
dependence of the scattering length is taken into account. We also examine the
behavior of the condensate in non-isotropic traps
The antibody loci of the domestic goat (Capra hircus)
The domestic goat (Capra hircus) is an important ruminant species both as a source of antibody-based reagents for research and biomedical applications and as an economically important animal for agriculture, particularly for developing nations that maintain most of the global goat population. Characterization of the loci encoding the goat immune repertoire would be highly beneficial for both vaccine and immune reagent development. However, in goat and other species whose reference genomes were generated using short-read sequencing technologies, the immune loci are poorly assembled as a result of their repetitive nature. Our recent construction of a long-read goat genome assembly (ARS1) has facilitated characterization of all three antibody loci with high confidence and comparative analysis to cattle. We observed broad similarity of goat and cattle antibody-encoding loci but with notable differences that likely influence formation of the functional antibody repertoire. The goat heavy-chain locus is restricted to only four functional and nearly identical IGHV genes, in contrast to the ten observed in cattle. Repertoire analysis indicates that light-chain usage is more balanced in goats, with greater representation of kappa light chains (~Â 20-30%) compared to that in cattle (~Â 5%). The present study represents the first characterization of the goat antibody loci and will help inform future investigations of their antibody responses to disease and vaccination
Comparing The Machiavellianism Of Todays Indonesian College Students With U. S. College Students Of Today And The 1960s
The tactics and strategies that were suggested by Niccolo Machiavelli in The Prince (1513) have become synonymous with manipulative and unethical practices. Machiavellis writing to the politician has been used to describe business leaders as well. The business literature indicates that Machiavellian tactics do not guarantee success. The research we report examined the Machiavellian tendencies of college students in Indonesia and compare those results to the literature including the original U.S. student sample of the 1960s and the Harmon and Webster student sample published in 2002
Nutrient uptake by soybeans on two Iowa soils
Although the soybean was introduced into the United States in 1804, it is only recently that its production has increased to the point where as a cash-grain crop it ranks fourth in the United States and second in the Midwest. It is perhaps owing to the relatively new status of the soybean as an important crop that the soil fertility requirements are not as yet well understood.
Notwithstanding the fact that soybean yields increase with the fertility level of the soil, experiments in the Midwest have shown in general that soybeans do not give the profitable response to direct application of fertilizer that is obtained with corn. The yield increases produced by direct application of fertilizers are comparatively small and unpredictable. This behavior may result from plant characteristics that have been classified as feeding power or it may result from a lack of knowledge of the plant in relation to its environment so that advantage is not taken of the proper means to bring about a profitable increase in yield from fertilizer application. Regarding\u27 the latter point, Norman (20) has suggested that information on the nutritional needs of the plant during its various stages of growth might be of considerable value in the experimental approach to the soil fertility problems of the soybean. To obtain such information for soybeans grown in the field on two Iowa soils differing widely in fertility level was the primary object of the present investigation
Pfaffian pairing wave functions in electronic structure quantum Monte Carlo
We investigate the accuracy of trial wave function for quantum Monte Carlo
based on pfaffian functional form with singlet and triplet pairing. Using a set
of first row atoms and molecules we find that these wave functions provide very
consistent and systematic behavior in recovering the correlation energies on
the level of 95%. In order to get beyond this limit we explore the
possibilities of multi-pfaffian pairing wave functions. We show that a small
number of pfaffians recovers another large fraction of the missing correlation
energy comparable to the larger-scale configuration interaction wave functions.
We also find that pfaffians lead to substantial improvements in fermion nodes
when compared to Hartree-Fock wave functions.Comment: 4 pages, 2 figures, 2 tables, submitted to PR
- …