25 research outputs found

    The sleep of elite athletes at sea level and high altitude: A comparison of sea-level natives and high-altitude natives (ISA3600)

    Get PDF
    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives

    The impact of altitude on the sleep of young elite soccer players (isa3600)

    Get PDF
    Background Altitude training is used by elite athletes to improve sports performance, but it may also disrupt sleep. The aim of this study was to examine the effects of two weeks at high altitude on the sleep of young elite athletes. Methods Participants (n=10) were members of the Australian under-17 soccer team on an 18-day (19-night) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3,600 m). Sleep was monitored using polysomnography during a baseline night at 430 m and three nights at 3,600 m (immediately after ascent, one week after ascent, two weeks after ascent). Data were analysed using effect size statistics. Results All results are reported as comparisons with baseline. Rapid eye movement (REM) sleep was likely lower immediately upon ascent to altitude, possibly lower after one week, and similar after two weeks. On all three nights at altitude, hypopneas and desaturations were almost certainly higher; oxygen saturation was almost certainly lower; and central apneas, respiratory arousals, and periodic breathing were very likely higher. The effects on REM sleep were common to all but one participant, but the effects on breathing were specific to only half the participants. Conclusions The immediate effects of terrestrial altitude of 3,600 m are to reduce the amount of REM sleep obtained by young elite athletes, and to cause 50% of them to have impaired breathing during sleep. REM sleep returns to normal after two weeks at altitude, but impaired breathing does not improve

    Wellness, fatigue and physical performance acclimatisation to a 2-week soccer camp at 3600 m (ISA3600)

    Get PDF
    Objectives To examine the time course of wellness, fatigue and performance during an altitude training camp (La Paz, 3600 m) in two groups of either sea-level (Australian) or altitude (Bolivian) native young soccer players. Methods Wellness and fatigue were assessed using questionnaires and resting heart rate (HR) and HR variability. Physical performance was assessed using HR responses to a submaximal run, a Yo-Yo Intermittent recovery test level 1 (Yo-YoIR1) and a 20 m sprint. Most measures were performed daily, with the exception of Yo-YoIR1 and 20 m sprints, which were performed near sea level and on days 3 and 10 at altitude. Results Compared with near sea level, Australians had moderate-to-large impairments in wellness and Yo-YoIR1 relative to the Bolivians on arrival at altitude. The acclimatisation of most measures to altitude was substantially slower in Australians than Bolivians, with only Bolivians reaching near sea-level baseline high-intensity running by the end of the camp. Both teams had moderately impaired 20 m sprinting at the end of the camp. Exercise HR had large associations (r>0.5–0.7) with changes in Yo-YoIR1 in both groups. Conclusions Despite partial physiological and perceptual acclimatisation, 2 weeks is insufficient for restoration of physical performance in young sea-level native soccer players. Because of the possible decrement in 20 m sprint time, a greater emphasis on speed training may be required during and after altitude training. The specific time course of restoration for each variable suggests that they measure different aspects of acclimatisation to 3600 m; they should therefore be used in combination to assess adaptation to altitude

    Soccer activity profile of altitude versus sea-level natives during acclimatisation to 3600 m (ISA3600)

    Get PDF
    Objectives We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents.Methods Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D5peak)) and high velocity running (>4.17 m/s, HIVR5peak); as well as the 5 min period immediately subsequent to the peak for both distance (D5sub) and high-velocity running (HIVR5sub) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games.Results The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D5peak and HiVR5peak from match to match for each team. There were within-team reductions in D5peak in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR5peak was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams.Conclusions High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Lower running performance and exacerbated fatigue in soccer played at 1600 m

    No full text
    Purpose: This study investigated the decrement in running performance of elite soccer players competing at low altitude and time course for abatement of these decrements. Methods: Twenty elite youth soccer players had their activity profile, in a sea-level (SL) and 2 altitude (Alt, 1600 m, d 4, and d 6) matches, measured with a global positioning system. Measures expressed in meters per minute of match time were total distance, low- and high-velocity running (LoVR, 0.01–4.16 m/s; HiVR, 4.17–10.0 m/s), and frequency of maximal accelerations (>2.78 m/s2). The peak and subsequent stanza for each measure were identified and a transient fatigue index calculated. Mean heart rate (HR) during the final minute of a submaximal running task (5 min, 11 km/h) was recorded at SL and for 10 d at Alt. Differences were determined between SL and Alt using percentage change and effect-size (ES) statistic with 90% confidence intervals. Results: Mean HR almost certainly increased on d 1 (5.4%, ES 1.01 ± 0.35) and remained probably elevated on both d 2 (ES 0.42 ± 0.31) and d3 (ES 0.30 ± 0.25), returning to baseline at d 5. Total distance was almost certainly lower than SL (ES –0.76 ± 0.37) at d 4 and remained probably reduced on d 6 (ES –0.42 ± 0.36). HiVR probably decreased at d 4 vs SL (–0.47 ± 0.59), with no clear effect of altitude at d 6 (–0.08 ± 0.41). Transient fatigue in matches was evident at SL and Alt, with a possibly greater decrement at Alt. Conclusion: Despite some physiological adaptation, match running performance of youth soccer players is compromised for at least 6 d at low altitude

    Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600)

    No full text
    To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h-1 (D>14.4 km·h-1) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen’s d +1.0, 90%CL ± 0.8) and D>14.4 km·h-1 (+0.5 ± 0.8) in AUS. D>14.4 km.h-1 was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h-1 increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in ‘fitness’ do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity
    corecore