90 research outputs found

    Distribution and density of α- and β-adrenergic receptor binding sites in the bovine mammary gland

    Get PDF
    Radioreceptor binding studies were designed to localize and determine the number of α and β-adrenergic receptors in the mammary gland of lactating cows. 3H-prazosin, 3H-rauwolscine and 3H-dihydroalprenolol were used for the regional characterization of α1, α2- and β-adrenergic receptors by competitive inhibition of binding of 3H-ligands with unlabelled adrenergic agonists and antagonists. The α1-, α2- and β2-adrenergic receptor subtypes could thus be demonstrated in the regions of the teats, large mammary ducts and parenchyma. Tissues of the teat wall, of the large mammary ducts above the gland cistern and of the mammary parenchyma were prepared to determine the density of α1, α2- and β-receptors by saturation binding assays using 3H-prazosin, 3H-rauwolscine and 3H-dihydroalprenolol respectively. Binding to high affinity sites was reversible within minutes and saturable. Equilibrium was reached within minutes. The number of α1-and α2-adrenergic receptors decreased from the teat to the mammary ducts to the parenchyma. Most of the α1- and α2-adrenergic receptors were found in the teat wall, whereas in the parenchyma α-adrenergic receptors were absent or barely detectable. The density of β-adrenergic receptors was similar in the teat wall and the large mammary ducts, but much lower in the parenchyma. Thus, α1, α2- and β-adrenergic receptors were found mainly in the milk purging system and hardly at all in mammary parenchyma. Inhibition of milk removal by α-adrenergic stimulation is possibly due to constriction of teat wall and to constriction of the mammary ducts, whereas enhanced milk flow after β-adrenergic stimulation is possibly due to relaxation not only of the teat sphincter and teat wall, but probably also of the large mammary duct

    Distribution and density of α– and β–adrenergic receptor binding sites in the bovine mammary gland

    Get PDF
    Radioreceptor binding studies were designed to localize and determine the number of α and β-adrenergic receptors in the mammary gland of lactating cows. 3H-prazosin, 3H-rauwolscine and 3H-dihydroalprenolol were used for the regional characterization of α1, α2- and β-adrenergic receptors by competitive inhibition of binding of 3H-ligands with unlabelled adrenergic agonists and antagonists. The α1-, α2- and β2-adrenergic receptor subtypes could thus be demonstrated in the regions of the teats, large mammary ducts and parenchyma. Tissues of the teat wall, of the large mammary ducts above the gland cistern and of the mammary parenchyma were prepared to determine the density of α1, α2- and β-receptors by saturation binding assays using 3H-prazosin, 3H-rauwolscine and 3H-dihydroalprenolol respectively. Binding to high affinity sites was reversible within minutes and saturable. Equilibrium was reached within minutes. The number of α1-and α2-adrenergic receptors decreased from the teat to the mammary ducts to the parenchyma. Most of the α1- and α2-adrenergic receptors were found in the teat wall, whereas in the parenchyma α-adrenergic receptors were absent or barely detectable. The density of β-adrenergic receptors was similar in the teat wall and the large mammary ducts, but much lower in the parenchyma. Thus, α1, α2- and β-adrenergic receptors were found mainly in the milk purging system and hardly at all in mammary parenchyma. Inhibition of milk removal by α-adrenergic stimulation is possibly due to constriction of teat wall and to constriction of the mammary ducts, whereas enhanced milk flow after β-adrenergic stimulation is possibly due to relaxation not only of the teat sphincter and teat wall, but probably also of the large mammary ducts

    Changes in fatty acids in plasma and association with the inflammatory response in dairy cows abomasally infused with essential fatty acids and conjugated linoleic acid during late and early lactation.

    Get PDF
    Dairy cows are exposed to increased inflammatory processes in the transition period from late pregnancy to early lactation. Essential fatty acids (EFA) and conjugated linoleic acid (CLA) are thought to modulate the inflammatory response in dairy cows. The present study investigated the effects of a combined EFA and CLA infusion on the fatty acid (FA) status in plasma lipids, and whether changes in the FA pattern were associated with the acute phase and inflammatory response during late pregnancy and early lactation. Rumen-cannulated Holstein cows (n = 40) were assigned from wk 9 antepartum to wk 9 postpartum to 1 of 4 treatment groups. Cows were abomasally supplemented with coconut oil (CTRL, 76 g/d), linseed and safflower oil (EFA, 78 g/d of linseed oil and 4 g/d of safflower oil; ratio of oils = 19.5:1; n-6:n-3 FA ratio = 1:3), Lutalin (CLA, 38 g/d; isomers cis-9,trans-11 and trans-10,cis-12; each 10 g/d), or both (EFA+CLA). Blood samples were taken to measure changes in FA in blood plasma on d -63, -42, 1, 28, and 56, and in plasma lipid fractions (cholesterol esters, free fatty acids, phospholipids, and triglycerides) on d -42, 1, and 56 relative to calving, and in erythrocyte membrane (EM) on d 56 after calving. Traits related to the acute phase response and inflammation were measured in blood throughout the study. Liver samples were obtained for biopsy on d -63, -21, 1, 28, and 63 relative to calving to measure the mRNA abundance of genes related to the inflammatory response. The concentrations of α-linolenic acid and n-3 FA metabolites increased in lipid fractions (especially phospholipids) and EM due to EFA supplementation with higher α-linolenic acid but lower n-3 metabolite concentrations in EFA+CLA than in EFA treatment only. Concentration of linoleic acid decreased in plasma fat toward calving and increased during early lactation in all groups. Concentration of plasma arachidonic acid was lower in EFA- than in non-EFA-treated groups in lipid fractions and EM. The cis-9,trans-11 CLA increased in all lipid fractions and EM after both CLA treatments. Plasma haptoglobin was lowered by EFA treatment before calving. Plasma bilirubin was lower in EFA and CLA than in CTRL at calving. Plasma concentration of IL-1β was higher in EFA than in CTRL and EFA+CLA at certain time points before and after calving. Plasma fibrinogen dropped faster in CLA than in EFA and EFA+CLA on d 14 postpartum. Plasma paraoxonase tended to be elevated by EFA treatment, and was higher in EFA+CLA than in CTRL on d 49. Hepatic mRNA abundance revealed time changes but no treatment effects with respect to the inflammatory response. Our data confirmed the enrichment of n-3 FA in EM by EFA treatment and the inhibition of n-3 FA desaturation by CLA treatment. The elevated n-3 FA status and reduced n-6:n-3 ratio by EFA treatment indicated a more distinct effect on the inflammatory response during the transition period than the single CLA treatment, and the combined EFA+CLA treatment caused minor additional changes on the anti-inflammatory response

    Cryptosporidium parvum infection alters the intestinal mucosa transcriptome in neonatal calves: implications for immune function

    Get PDF
    One of the leading causes of infectious diarrhea in newborn calves is the apicomplexan protozoan Cryptosporidium parvum (C. parvum). However, little is known about its immunopathogenesis. Using next generation sequencing, this study investigated the immune transcriptional response to C. parvum infection in neonatal calves. Neonatal male Holstein-Friesian calves were either orally infected (N = 5) or not (CTRL group, N = 5) with C. parvum oocysts (gp60 subtype IIaA15G2R1) at day 1 of life and slaughtered on day 7 after infection. Total RNA was extracted from the jejunal mucosa for short read. Differentially expressed genes (DEGs) between infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05. Infection did not affect plasma immunohematological parameters, including neutrophil, lymphocyte, monocyte, leucocyte, thrombocyte, and erythrocyte counts as well as hematocrit and hemoglobin concentration on day 7 post infection. The immune-related DEGs were selected according to the UniProt immune system process database and were used for gene ontology (GO) and pathway enrichment analysis using Cytoscape (v3.9.1). Based on GO analysis, DEGs annotated to mucosal immunity, recognizing and presenting antigens, chemotaxis of neutrophils, eosinophils, natural killer cells, B and T cells mediated by signaling pathways including toll like receptors, interleukins, tumor necrosis factor, T cell receptor, and NF-KB were upregulated, while markers of macrophages chemotaxis and cytosolic pattern recognition were downregulated. This study provides a holistic snapshot of immune-related pathways induced by C. parvum in calves, including novel and detailed feedback and feedforward regulatory mechanisms establishing the crosstalk between innate and adaptive immune response in neonate calves, which could be utilized further to develop new therapeutic strategies

    Phenotype Selection Reveals Coevolution of Muscle Glycogen and Protein and PTEN as a Gate Keeper for the Accretion of Muscle Mass in Adult Female Mice

    Get PDF
    We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice

    Analysis of the IGF-system in milk from farm animals – Occurrence, regulation, and biomarker potential

    No full text
    IGFs and IGF-binding proteins (IGFBPs) are abundantly present in milk and in dairy products. Compared to the IGFs, the IGFBP have received less attention in milk, although truncated IGFBPs and IGFBP-glycosylation have been described in milk. Thereby, complex control of local IGF-effects can be assumed on the levels of IGFBPs, proteases, and protease inhibitors. The present review collects the current knowledge both on presence and regulation of IGFs and IGFBPs in milk particularly from dairy animal species. As a rule higher levels of IGF-I, IGF-II, and IGFBPs are measured around parturition if compared to later time-points of lactation. In all farm animal species included in this review, it is found that the relative abundancies of IGFBPs in milk and serum are similar, with IGFBP-3 and -2 characterized by higher concentrations if compared to IGFBP-4 or -5. The concentrations of IGFs and IGFBPs in milk or dairy products can be altered by hormones, dairy processing, or fermentation. Because milk can be used for non-invasive biomarker research, quality management, and health monitoring, we discuss novel directions of IGF-analysis and potential on-site biomarker research in milk

    Body fat mobilization in early lactation influences methane production of dairy cows

    No full text
    Long-chain fatty acids mobilized during early lactation of dairy cows are increasingly used as energy substrate at the expense of acetate. As the synthesis of acetate in the rumen is closely linked to methane (CH4) production, we hypothesized that decreased acetate utilization would result in lower ruminal acetate levels and thus CH4 production. Twenty heifers were sampled for blood, rumen fluid and milk, and CH4 production was measured in respiration chambers in week −4, +5, +13 and +42 relative to first parturition. Based on plasma non-esterified fatty acid (NEFA) concentration determined in week +5, animals were grouped to the ten highest (HM; NEFA > 580 μmol) and ten lowest (LM; NEFA < 580 μmol) mobilizing cows. Dry matter intake (DMI), milk yield and ruminal short-chain fatty acids did not differ between groups, but CH4/DMI was lower in HM cows in week +5. There was a negative regression between plasma NEFA and plasma acetate, between plasma NEFA and CH4/DMI and between plasma cholecystokinin and CH4/DMI in week +5. Our data show for the first time that fat mobilization of the host in early lactation is inversely related with ruminal CH4 production and that this effect is not attributed to different DMI

    Mammalian target of rapamycin signaling and ubiquitin proteasome-related gene expression in 3 different skeletal muscles of colostrum- versus formula-fed calves.

    No full text
    The rates of protein turnover are higher during the neonatal period than at any other time in postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system are key pathways regulating cellular protein turnover. The objectives of this study were (1) to elucidate the effect of feeding colostrum versus milk-based formula on the mRNA abundance of key components of the mTOR pathway and of the ubiquitin-proteasome system in skeletal muscle of neonatal calves and (2) to compare different muscles. German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) up to 4 d of life. The nutrient content in formula and colostrum was similar, but formula had lower concentrations of free branched-chain AA (BCAA) and free total AA, insulin, and insulin-like growth factor (IGF)-I than colostrum. Blood samples were taken from d 1 to 4 before morning feeding and before and 2 h after the last feeding on d 4. Muscle samples from M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM) were collected after slaughter on d 4 at 2 h after feeding. The preprandial concentrations of free total AA and BCAA, insulin, and IGF-I in plasma changed over time but did not differ between groups. Plasma free total AA and BCAA concentrations decreased in COL, whereas they increased in FOR after feeding, resulting in higher postprandial plasma total AA and BCAA concentrations in FOR than in COL. Plasma insulin concentrations increased after feeding in both groups but were higher in COL than in FOR. Plasma IGF-I concentrations decreased in COL, whereas they remained unchanged in FOR after feeding. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in 3 different skeletal muscles was greater in COL than in FOR, whereas that of eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) was unaffected by diet. The mRNA abundance of ubiquitin activating enzyme (UBA1) and ubiquitin conjugating enzyme 1 (UBE2G1) enzymes was not affected by diet, whereas that of ubiquitin conjugating enzyme 2 (UBE2G2) was greater (MLD) or tended to be greater (MM) in COL than in FOR. The mRNA abundance of atrogin-1 in MLD and MST was lower in COL than in FOR, whereas that of muscle ring finger protein-1 (MuRF1) was greater (MST) or tended to be greater (MLD). The abundance of MuRF1 mRNA was highest in MST, followed by MLD, and was lowest in MM. The results indicate that colostrum feeding may stimulate protein turnover that may result in a high rate of protein deposition in a muscle type-specific manner. Such effects seem to be mediated by the postprandial increase in plasma insulin

    Consequences of Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation on the Development of Calf Muscle and Adipose Tissue

    No full text
    Common silage and concentrate-based diets in dairy and beef production may deliver insufficient amounts of essential fatty acids (EFA), thereby also reducing conjugated linoleic acids (CLA) in body tissues and milk. An impaired maternal EFA and CLA supply can have an important impact on calf postnatal development. The current study investigates how maternal supplementation with EFA and CLA affects muscle and adipose tissue development in neonatal calves. Holstein cows (n = 40) were abomasaly supplemented with coconut oil (control), CLA or EFA, or both combined during the transition period. Calves were fed their dam’s colostrum until slaughter at day 5 of life. Fatty acid composition and tissue morphology were analyzed. In muscle and adipose tissues, EFA, CLA, and metabolites were elevated, indicating the effective transfer of maternally-supplemented FA to the offspring. Muscle fiber types, fiber nuclei, myosin heavy chain isoform distribution, capillarization, and fat cell size of intramuscular and other adipose tissues did not differ among groups. The results confirm that maternal nutrition during the transition period can alter the FA composition of the calf tissues. This could influence the offspring’s development and health in the long-term, even though only minor effects were observed in the neonatal calves’ tissue morphology

    Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding

    No full text
    Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group) that were born either preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery) or spontaneously born and fed colostrum for 4 days (TC). Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV), total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter 2 (GLUT2) in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking
    • …
    corecore