16 research outputs found

    Application of a Microstructure-Based ISV Plasticity Damage Model to Study Penetration Mechanics of Metals and Validation through Penetration Study of Aluminum

    Get PDF
    A developed microstructure-based internal state variable (ISV) plasticity damage model is for the first time used for simulating penetration mechanics of aluminum to find out its penetration properties. The ISV damage model tries to explain the interplay between physics at different length scales that governs the failure and damage mechanisms of materials by linking the macroscopic failure and damage behavior of the materials with their micromechanical performance, such as void nucleation, growth, and coalescence. Within the continuum modeling framework, microstructural features of materials are represented using a set of ISVs, and rate equations are employed to depict damage history and evolution of the materials. For experimental calibration of this damage model, compression, tension, and torsion straining conditions are considered to distinguish damage evolutions under different stress states. To demonstrate the reliability of the presented ISV model, that model is applied for studying penetration mechanics of aluminum and the numerical results are validated by comparing with simulation results yielded from the Johnson-Cook model as well as analytical results calculated from an existing theoretical model

    Assessment of brain injury biomechanics in soccer heading using finite element analysis

    Get PDF
    This study presents an in silico finite element (FE) model-based biomechanical analysis of brain injury metrics and associated risks of a soccer ball impact to the head for aware and unaware athletes, considering ball impact velocity and direction. The analysis presented herein implements a validated soccer ball and 50th percentile human head computational FE model for quantifying traumatic brain injury (TBI) metrics. The brain's mechanical properties are designated using a viscoelastic-viscoplastic constitutive material model for the white and gray matter within the human head FE model. FE results show a dynamic human head-soccer ball peak contact area of approximately seven times greater than those documented for helmet-to-helmet hits in American Football. Due to the deformable nature of the soccer ball, the impact dynamics are unique depending on the location and velocity of impact. TBI injury risks also depend on the location of impact and the impact velocity. Impacts to the rear (BrIC:0.48, HIC15:180.7), side (BrIC:0.52, HIC15:176.5), and front (BrIC:0.37, HIC15:129.0) are associated with the highest injury risks. Furthermore, the FE results indicate when an athlete is aware of an incoming ball, HIC15-based Abbreviated Injury Scale 1 (AIS 1) injury risks for the front, side, and rear impacts decrease from 10.5%, 18.5%, and 19.3%, respectively, to approximately 1% in front and side impacts and under 6% in a rear impact. Lastly, the unique contact area between the head and soccer ball produces pressure gradients in the ball that translate into distinguishable stress waves in the skull and the cerebral cortex

    Simulation numérique de l'endommagement dans les procédés de mise en forme

    No full text
    Ce travail consiste à proposer une méthodologie numérique de réalisation virtuelle des procédés de fabrication et de mise en forme par grandes déformations plastiques avec endommagement. L'objectif étant de pouvoir optimiser virtuellement un procédé, en agissant sur les paramètres technologiques, de façon à soit retarder au maximum l'apparition d'un endommagement significatif, si l'on veut obtenir une pièce saine (forgage, emboutissage) ; soit favoriser l'amorçage et la croissance de l'endommagement, pour réaliser des opérations de découpage de toles par exemple. On propose une formulation générale anisotrope avec des couplages forts d'état et des dissipations. L'analyse des dissipations est faite dans le cadre des matériaux standards généralisés (MSG) avec une théorie non associée en utilisant deux formulations différentes. Une première formulation à surface unique qui est basée sur l'hypothèse qu'il ne peut y avoir d'endommagement sans écoulement plastique. Une seconde formulation à deux surfaces (couplées), une surface de plasticité écrouissable avec influence du dommage et une surface de non endommagement, qui relaxe l'hypothèse précédente. La généralisation aux transformations finies est réalisée dans le cadre d'une formulation dans un référentiel tournant à partir de la configuration intermédiaire, moyennant l'adoption de l'HPP pour la transformation élastique. Cette approche à l'avantage de découpler les non linéarités cinématique et matérielle. Sur le plan numérique, un soin particulier a été apporté pour l'intégration locale des équations couplées des différents modèles proposés (à deux surfaces ou une surface unique). Les algorithmes d'intégration ont été optimisés afin de réduire le nombre d'équations de 28 à 14 dans le cas anisotrope, et de 15 à 2 dans le cas totalement isotrope ; de calculer semi-analytiquement l'expression de la matrice tangente consistante et d'utiliser un schéma d'intégration locale asymptotique. Cette méthodologie a été validée en traitant plusieurs exemples 2D et 3D couvrant une large gamme de fabrication et de mise en forme : découpage de toles, emboutissage, forgeage, hydroformage de tubes complexes, etcTROYES-SCD-UTT (103872102) / SudocVILLEURBANNE-DOC'INSA LYON (692662301) / SudocSudocFranceF

    Numerical aspects of finite elastoplasticity with isotropic ductile damage for metal forming

    No full text
    International audienceThis work is devoted to the study of an efficient numerical algorithm for evaluating damaged-plastic response of a material submitted to large plastic deformations. Fully coupled constitutive equations accounting for both combined isotropic and kinematic hardening as well as the ductile damage are formulated in the framework of Continuum Damage Mechanics (CDM). The associated numerical aspects concerning both the local integration of the coupled constitutive equations and the (global) equilibrium integration schemes are presented and implemented into a general purpose Finite Element code (ABAQUS). For the local integration of the fully coupled constitutive equations an efficient implicit and asymptotic scheme is used. Special care is given to the consistent tangent stiffness matrix derivation as well as to the reduction of the number of constitutive equations. Some numerical results are presented to show the numerical performance of the proposed stress calculation algorithm and the capability of the approach to predict the damage initiation and growth during a given metal forming process.Ce travail est dévolu à l'étude d'un schéma incrémental pour l'évaluation de la réponse plastique-endommagée d'un matériau soumis à des incréments de déplacement en transformations finies. Des équations de comportement élastoplastique avec écrouissage mixte et endommagement ductile sont présentées dans le cadre de la thermodynamique des processus irréversibles avec variables d'état incluant l'endommagement continu. Les aspects numériques concernant l'intégration locale des équations constitutives ainsi que le schéma global de résolution du problème d'équilibre avec implémentation dans la plate-forme ABAQUS sont discutés. Pour l'intégration locale du modèle couplé un schéma asymptotique implicite est utilisé. Une attention particulière est accordée au calcul de la matrice tangente consistante et à la réduction du nombre des équations à résoudre. Quelques résultats numériques sont présentés pour montrer les performances numériques du schéma de calcul des contraintes proposé et pour illustrer la capacité de la modélisation é prédire l'amorçage et la croissance de l'endommagement ductile dans un procédé de mise en forme

    Experiments and Modeling of Fatigue Behavior of Friction Stir Welded Aluminum Lithium Alloy

    No full text
    An extensive experimental and computational investigation of the fatigue behavior of friction stir welding (FSW) of aluminum–lithium alloy (AA2099) is presented. In this study, friction stir butt welds were created by joining AA2099 using two different welding parameter sets. After FSW, microstructure characterization was carried out using microhardness testing, scanning electron microscopy, and transmission electron microscopy techniques. In particular, the metastable strengthening precipitates T1 (Al2CuLi) and δ’(Al3Li) seen in the base metal were observed to coarsen and dissolve due to the FSW process. In order to evaluate the static and fatigue behavior of the FSW of the AA2099, monotonic tensile and fully-reversed strain-controlled fatigue testing were performed. Mechanical testing of the FSW specimens found a decrease in the ultimate tensile strength and fatigue life compared to the base metal. While the process parameters had an effect on the monotonic properties, no significant difference was observed in the number of cycles to failure between the FSW parameters explored in this study. Furthermore, post-mortem fractography analysis of the FSW specimens displayed crack deflection, transgranular fracture, and delamination failure features commonly observed in other parent Al–Li alloys. Lastly, a microstructurally-sensitive fatigue model was used to elucidate the influence of the FSW process on fatigue life based on variations in grain size, microhardness, and particle size in the AA2099 FSW
    corecore