610 research outputs found

    Direct multiscale coupling of a transport code to gyrokinetic turbulence codes

    Full text link
    Direct coupling between a transport solver and local, nonlinear gyrokinetic calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D. thesis, arxiv:0901.2868] is described. The coupling of the microscopic and macroscopic physics is done within the framework of multiscale gyrokinetic theory, of which we present the assumptions and key results. An assumption of scale separation in space and time allows for the simulation of turbulence in small regions of the space-time grid, which are embedded in a coarse grid on which the transport equations are implicitly evolved. This leads to a reduction in computational expense of several orders of magnitude, making first-principles simulations of the full fusion device volume over the confinement time feasible on current computing resources. Numerical results from TRINITY simulations are presented and compared with experimental data from JET and ASDEX Upgrade plasmas.Comment: 12 pages, 13 figures, invited paper for 2009 APS-DPP meeting, submitted to Phys. Plasma

    Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence

    Full text link
    Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range kρi1k_\perp\rho_i\gtrsim 1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee

    Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas

    Get PDF
    This letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    Full text link
    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the "anti-phase-mixing" effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the "critical balance" between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published in JP

    Transition from collisionless to collisional MRI

    Full text link
    Recent calculations by Quataert et al. (2002) found that the growth rates of the magnetorotational instability (MRI) in a collisionless plasma can differ significantly from those calculated using MHD. This can be important in hot accretion flows around compact objects. In this paper we study the transition from the collisionless kinetic regime to the collisional MHD regime, mapping out the dependence of the MRI growth rate on collisionality. A kinetic closure scheme for a magnetized plasma is used that includes the effect of collisions via a BGK operator. The transition to MHD occurs as the mean free path becomes short compared to the parallel wavelength 2\pi/k_{\Par}. In the weak magnetic field regime where the Alfv\'en and MRI frequencies ω\omega are small compared to the sound wave frequency k_{\Par} c_0, the dynamics are still effectively collisionless even if ων\omega \ll \nu, so long as the collision frequency \nu \ll k_{\Par} c_{0}; for an accretion flow this requires \nu \lsim \Omega \sqrt{\beta}. The low collisionality regime not only modifies the MRI growth rate, but also introduces collisionless Landau or Barnes damping of long wavelength modes, which may be important for the nonlinear saturation of the MRI.Comment: 20 pages, 4 figures, submitted to ApJ with a clearer derivation of anisotropic pressure closure from drift kinetic equatio

    Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX

    Get PDF
    The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma beta affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing beta values, revealing that the high beta equilibrium was marginally more stable than the low beta equilibrium in the adiabatic-electron ITG mode case. However, the high beta case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second beta effect is demonstrated via electromagnetic ITG growth rates' dependency on GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure

    Simulating Gyrokinetic Microinstabilities in Stellarator Geometry with GS2

    Full text link
    The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.Comment: Submitted to Physics of Plasmas. 9 pages, 14 figure

    Dissipation-Scale Turbulence in the Solar Wind

    Get PDF
    We present a cascade model for turbulence in weakly collisional plasmas that follows the nonlinear cascade of energy from the large scales of driving in the MHD regime to the small scales of the kinetic Alfven wave regime where the turbulence is dissipated by kinetic processes. Steady-state solutions of the model for the slow solar wind yield three conclusions: (1) beyond the observed break in the magnetic energy spectrum, one expects an exponential cut-off; (2) the widely held interpretation that this dissipation range obeys power-law behavior is an artifact of instrumental sensitivity limitations; and, (3) over the range of parameters relevant to the solar wind, the observed variation of dissipation range spectral indices from -2 to -4 is naturally explained by the varying effectiveness of Landau damping, from an undamped prediction of -7/3 to a strongly damped index around -4.Comment: 6 pages, 2 figures, accepted for publication in AIP Conference Proceedings on "Turbulence and Nonlinear Processes in Astrophysical Plasmas
    corecore