163 research outputs found

    Detection and imaging of the oxygen deficiency in single crystalline YBa2_{\text{2}}Cu3_{\text{3}}O7−δ_{\text{7}-\delta} thin films using a positron beam

    Full text link
    Single crystalline YBa2_{\text{2}}Cu3_{\text{3}}O7−δ_{\text{7}-\delta} (YBCO) thin films were grown by pulsed laser deposition (PLD) in order to probe the oxygen deficiency δ\delta using a mono-energetic positron beam. The sample set covered a large range of δ\delta (0.191<δ\delta<0.791) yielding a variation of the critical temperature TcT_{\text{c}} between 25 and 90\,K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ\delta determined by X-ray diffraction (XRD). Both, the origin of the found correlation and the influence of metallic vacancies, were examined with the aid of ab-initio calculations that allowed us (i) to exclude the presence of Y vacancies and (ii) to ensure that positrons still probe δ\delta despite the potential presence of Ba or Cu vacancies. In addition, by scanning with the positron beam the spatial variation of δ\delta could be analyzed. It was found to fluctuate with a standard deviation of up to 0.079(5)0.079(5) within a single YBCO film

    A possible solution of the grain boundary problem for applications of high-Tc superconductors

    Full text link
    It is shown that the critical current density of high-Tc wires can be greatly enhanced by using a threefold approach, which consists of grain alignment, doping, and optimization of the grain architecture. According to model calculations, current densities of 4x10^6 A/cm2 can be achieved for an average grain alignment of 10 degree at 77K. Based on this approach, a road to competitive high-Tc cables is proposed.Comment: 3 pages, 5 figure

    Robust dx2-y2 pairing symmetry in high-temperature superconductors

    Full text link
    Although initially quite controversial, it has been widely accepted that the Cooper pairs in optimally doped cuprate superconductors have predominantly dx2-y2 wavefunction symmetry. The controversy has now shifted to whether the high-Tc pairing symmetry changes away from optimal doping. Here we present phase-sensitive tricrystal experiments on three cuprate systems: Y0.7Ca0.3Ba2Cu3O7-x (Ca-doped Y-123), La2-xSrxCuO4 (La-214) and Bi2Sr2CaCu2O8+x (Bi-2212),with doping levels covering the underdoped, optimal and overdoped regions. Our work implies that time-reversal invariant, predominantly dx2-y2 pairing symmetry is robust over a large variation in doping, and underscores the important role of on-site Coulomb repulsion in the making of high-temperature superconductivity.Comment: 4 pages, 4 figure

    Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO3

    Full text link
    Soft x-ray resonant scattering at the Ni L2,3 edges is used to test models of magnetic and orbital-ordering below the metal-insulator transition in NdNiO3. The large branching ratio of the L3 to L2 intensities of the (1/2,0,1/2) reflection and the observed azimuthal angle and polarization dependence originates from a non collinear magnetic structure. The absence of an orbital signal and the non collinear magnetic structure show that the nickelates are materials for which orbital ordering is absent at the metal-insulator transition.Comment: 10 pages, 4 figures, Physical Review B rapid communication, to be publishe

    Spatial homogeneity and doping dependence of quasiparticle tunneling spectra in cuprate superconductors

    Get PDF
    Scanning tunneling spectroscopy (STS) studies reveal long-range (similar to 100 nm) spatial homogeneity in optimally and underdoped superconducting YBa2Cu3O7-delta (YBCO) single crystals and thin films, and macroscopic spatial modulations in overdoped (Y0.7Ca0.3)BaCu3O7-delta (Ca-YBCO) epitaxial films. In contrast, STS on an optimally doped YBa2(Cu0.9934Zn0.0026Mg0.004)(3)O-6.9 single crystal exhibits strong spatial modulations and suppression of superconductivity over a microscopic scale near the Zn or Mg impurity sites, and the global pairing potential is also reduced relative to that of optimally doped YBCO, suggesting strong pair-breaking effects of the non-magnetic impurities. The spectral characteristics are consistent with d(x2-y2) pairing symmetry for the optimally and underdoped YBCO, and with (d(x2-y2) + s) for the overdoped Ca-YBCO. The doping-dependent pairing symmetry suggests interesting changes in the superconducting ground state, and is consistent with the presence of nodal quasiparticles for all doping levels. The maximum energy gap Delta (d) is non-monotonic with the doping level, while the (2 Delta (d)/k(B)T(c)) ratio increases with decreasing doping. The similarities and contrasts between the spectra of YBCO and of Bi2Sr2CaCu2O8+x are discussed

    Two-dimensional electron liquid state at LaAlO3-SrTiO3 interfaces

    Full text link
    Using tunneling spectroscopy we have measured the spectral density of states of the mobile, two-dimensional electron system generated at the LaAlO3-SrTiO3 interface. As shown by the density of states the interface electron system differs qualitatively, first, from the electron systems of the materials defining the interface and, second, from the two-dimensional electron gases formed at interfaces between conventional semiconductors

    Diodes with Breakdown Voltages Enhanced by the Metal-Insulator Transition of LaAlO3_3-SrTiO3_3 Interfaces

    Full text link
    Using the metal-insulator transition that takes place as a function of carrier density at the LaAlO3_3-SrTiO3_3 interface, oxide diodes have been fabricated with room-temperature breakdown voltages of up to 200 V. With applied voltage, the capacitance of the diodes changes by a factor of 150. The diodes are robust and operate at temperatures up to 270 C

    Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments

    Get PDF
    Slaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., blaTEM_{TEM}, blaCTX−M−15_{CTX-M-15}, blaCTX−M−32_{CTX-M-32}, blaOXA−48_{OXA-48}, blaCMY_{CMY} and mcr-1) of up to 1.48 × 106^{6} copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1–4.2 log units after conventional treatment. Following ozonation, mcr-1 and blaCTX−M−32_{CTX-M-32} were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and blaOXA−48_{OXA-48}), ranging from 1.75 × 102^{2} to 3.44 × 103^{3} copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered
    • …
    corecore