122 research outputs found

    Why the Circumcision Judgment looks so weird to American Eyes

    Get PDF

    Strategizing the Abolition of Capital Punishment in Three European Nations

    Get PDF

    Imaging the Disk and Jet of the Classical T Tauri Star AA Tau

    Get PDF
    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature

    Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects

    Get PDF
    Purpose: To investigate macular ganglion cell–inner plexiform layer (mGCIPL) thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL) defects on stereophotographs. Methods: 112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES) subjects had standard automated perimetry (SAP), optical coherence tomography (OCT) imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs. Result: 47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001) and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000). The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior) mGCIPL was thinnest in the same hemiretina in 26 eyes (90%). Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001) and inferior mGCIPL (P = 0.030) compared to glaucomatous eyes without a visible RNFL defect. Conclusion: The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect

    Bloch-Redfield theory of high-temperature magnetic fluctuations in interacting spin systems

    Full text link
    We study magnetic fluctuations in a system of interacting spins on a lattice at high temperatures and in the presence of a spatially varying magnetic field. Starting from a microscopic Hamiltonian we derive effective equations of motion for the spins and solve these equations self-consistently. We find that the spin fluctuations can be described by an effective diffusion equation with a diffusion coefficient which strongly depends on the ratio of the magnetic field gradient to the strength of spin-spin interactions. We also extend our studies to account for external noise and find that the relaxation times and the diffusion coefficient are mutually dependent
    • …
    corecore