179 research outputs found
Atmospheric water parameters in mid-latitude cyclones observed by microwave radiometry and compared to model calculations
Existing and experimental algorithms for various parameters of atmospheric water content such as integrated water vapor, cloud water, precipitation, are used to examine the distribution of these quantities in mid latitude cyclones. The data was obtained from signals given by the special sensor microwave/imager (SSM/I) and compared with data from the nimbus scanning multichannel microwave radiometer (SMMR) for North Atlantic cyclones. The potential of microwave remote sensing for enhancing knowledge of the horizontal structure of these storms and to aid the development and testing of the cloud and precipitation aspects of limited area numerical models of cyclonic storms is investigated
Using a single band GNSS receiver to improve relative positioning in autonomous cars
We show how the combination of a single band global navigation satellite systems (GNSS) receiver, standard automotive level inertial measurement unit (IMU), and wheel speed sensors, can be used for relative positioning with accuracy on a decimeter scale. It is realized without the need for expensive dual band receivers, base stations or long initialization times. This is implemented and evaluated in a natural driving environment against a reference systems and against two simple base line systems; one using only IMU and wheel speed sensors, the other also adding basic GNSS. The proposed solution provides substantially slower error growth than either of the two base line systems
A Cross-Season Correspondence Dataset for Robust Semantic Segmentation
In this paper, we present a method to utilize 2D-2D point matches between
images taken during different image conditions to train a convolutional neural
network for semantic segmentation. Enforcing label consistency across the
matches makes the final segmentation algorithm robust to seasonal changes. We
describe how these 2D-2D matches can be generated with little human interaction
by geometrically matching points from 3D models built from images. Two
cross-season correspondence datasets are created providing 2D-2D matches across
seasonal changes as well as from day to night. The datasets are made publicly
available to facilitate further research. We show that adding the
correspondences as extra supervision during training improves the segmentation
performance of the convolutional neural network, making it more robust to
seasonal changes and weather conditions.Comment: In Proc. CVPR 201
A CPHD Filter for Tracking With Spawning Models
In some applications of multi-target tracking, appearing targets are suitably modeled as spawning from existing targets. However, in the original formulation of the cardinalized probability hypothesis density (CPHD) filter, this type of model is not supported; instead appearing targets are modeled by spontaneous birth only. In this paper we derive the necessary equations for a CPHD filter for the case when the process model also includes target spawning. For this generalized filter, the cardinality prediction formula might become computationally intractable for general spawning models. However, when the cardinality distribution of the spawning targets is either Bernoulli or Poisson, we derive expressions that are practical and computationally efficient. Simulations show that the proposed filter responds faster to a change in target number due to spawned targets than the original CPHD filter. In addition, the performance of the filter, considering the optimal subpattern assignment (OSPA), is improved when having an explicit spawning model
Variational Bayesian Expectation Maximization for Radar Map Estimation
For self-localization, a detailed and reliable map of the environment can be used to relate sensor data to static features with known locations. This paper presents a method for construction of detailed radar maps that describe the expected intensity of detections. Specifically, the measurements are modelled by an inhomogeneous Poisson process with a spatial intensity function given by the sum of a constant clutter level and an unnormalized Gaussian mixture. A substantial difficulty with radar mapping is the presence of data association uncertainties, i.e., the unknown associations between measurements and landmarks. In this paper, the association variables are introduced as hidden variables in a variational Bayesian expectation maximization (VBEM) framework, resulting in a computationally efficient mapping algorithm that enables a joint estimation of the number of landmarks and their parameters
Adaptive Radar Sensor Model for Tracking Structured Extended Objects
We propose a tracking framework jointly estimating the position of a single extended object and the set of radar reflectors that it contains. The reflectors are assumed to lie on a line structure, but the number of reflectors and their positions on the line are unknown. Additionally, we incorporate an accurate radar sensor model considering the resolution capabilities of the sensor. The evaluation of the framework on radar measurements shows promising results
A comparison of the L2 minimum distance estimator and the EM-algorithm when fitting k-component univariate normal mixtures
The method of maximum likelihood using the EM-algorithm for fitting finite mixtures of normal distributions is the accepted method of estimation ever since it has been shown to be superior to the method of moments. Recent books testify to this. There has however been criticism of the method of maximum likelihood for this problem, the main criticism being when the variances of component distributions are unequal the likelihood is in fact unbounded and there can be multiple local maxima. Another major criticism is that the maximum likelihood estimator is not robust. Several alternative minimum distance estimators have since been proposed as a way of dealing with the first problem. This paper deals with one of these estimators which is not only superior due to its robustness, but in fact can have an advantage in numerical studies even at the model distribution. Importantly, robust alternatives of the EM-algorithm, ostensibly fitting t distributions when in fact the data are mixtures of normals, are also not competitive at the normal mixture model when compared to the chosen minimum distance estimator. It is argued for instance that natural processes should lead to mixtures whose component distributions are normal as a result of the Central Limit Theorem. On the other hand data can be contaminated because of extraneous sources as are typically assumed in robustness studies. This calls for a robust estimato
Using Image Sequences for Long-Term Visual Localization
Estimating the pose of a camera in a known scene, i.e., visual localization, is a core task for applications such as self-driving cars. In many scenarios, image sequences are available and existing work on combining single-image localization with odometry offers to unlock their potential for improving localization performance. Still, the largest part of the literature focuses on single-image localization and ignores the availability of sequence data. The goal of this paper is to demonstrate the potential of image sequences in challenging scenarios, e.g., under day-night or seasonal changes. Combining ideas from the literature, we describe a sequence-based localization pipeline that combines odometry with both a coarse and a fine localization module. Experiments on long-term localization datasets show that combining single-image global localization against a prebuilt map with a visual odometry / SLAM pipeline improves performance to a level where the extended CMU Seasons dataset can be considered solved. We show that SIFT features can perform on par with modern state-of-the-art features in our framework, despite being much weaker and a magnitude faster to compute. Our code is publicly available at github.com/rulllars
Vehicle self-localization using off-the-shelf sensors and a detailed map
In the research on autonomous vehicles, self-localization is an important problem to solve. In this paper we present a localization algorithm based on a map and a set of off-the-shelf sensors, with the purpose of evaluating this low-cost solution with respect to localization performance. The used test vehicle is equipped with a Global Positioning System receiver, a gyroscope, wheel speed sensors, a camera providing information about lane markings, and a radar detecting landmarks along the road. Evaluation shows that the localization result is within or close to the requirements for autonomous driving when lane markers and good radar landmarks are present. However, it also indicates that the solution is not robust enough to handle situations when one of these information sources is absent
Variational Bayesian EM for SLAM
Designing accurate, robust and cost-effective systems is an important aspect of the research on self-driving vehicles. Radar is a common part of many existing automotive solutions and it is robust to adverse weather and lighting conditions, as such it can play an important role in the design of a self-driving vehicle. In this paper, a radar-based simultaneous localization and mapping (SLAM) algorithm using variational Bayesian expectation maximization (VBEM) is presented. The VBEM translates the inference problem to an optimization one. It provides an efficient and powerful method to estimate the unknown data association variables as well as the map of the environment as perceived by a radar and the unknown trajectory of the vehicle
- …