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Abstract—Designing accurate, robust and cost-effective sys-
tems is an important aspect of the research on self-driving
vehicles. Radar is a common part of many existing automotive
solutions and it is robust to adverse weather and lighting
conditions, as such it can play an important role in the design of
a self-driving vehicle. In this paper, a radar-based simultaneous
localization and mapping (SLAM) algorithm using variational
Bayesian expectation maximization (VBEM) is presented. The
VBEM translates the inference problem to an optimization one.
It provides an efficient and powerful method to estimate the
unknown data association variables as well as the map of the
environment as perceived by a radar and the unknown trajectory
of the vehicle.

I. INTRODUCTION

During recent years, self-driving cars have been the subject
of extensive research. Many different functionalities expected
from a self-driving vehicle are facilitated by having an accurate
map of the environment and the ability to localize accurately
within that map. The problem of mapping an unknown envi-
ronment and estimating the unknown trajectory of the vehicle
concurrently, is referred to as simultaneous localization and
mapping (SLAM) [1] [2].

For designing a robust SLAM solution in a cost-effective
manner, it is important to explore the use of different sensors
as well as different combinations of sensors to achieve the
desired functionalities. In [3] the authors present a SLAM
solution using a high-end Velodyne (64-beam rotating Lidar)
sensor. Another SLAM solution using the Velodyne sensor is
described in [4]. In [5], the authors present a vision based
SLAM. Although high-end sensors such as the Velodyne can
provide accurate solutions, the price of such sensors and the
manufacturers’ preference to avoid altering the appearance
of their vehicles by mounting large sensors on them, have
led researchers to look into more cost-effective solutions.
For instance, [6] presents an example of autonomous driving
using close-to-the-market sensors. Size and cost of the camera,
among other things, make it a desirable sensor for automotive
applications. However, the camera is strongly affected by
adverse weather and ambient lighting conditions.

Radar is an important sensor that is commonly used in
different automotive applications. Radar provides the relative
range, angle and speed to objects detected in its field of view.
Therefore, radar detections can be used to build a map of
the static as well as the dynamic objects of the environment.
In [7], authors compare a radar to a laser range finder and
conclude that the radar is less susceptible to occlusions and can

penetrate further into the environment. In addition compared
to other range finders, a radar’s performance is less affected by
dust, smoke, undesirable weather conditions and ambient light
situation [7]. Furthermore, the size of automotive radars are
such that they can easily be fitted into cars. Consequently, a
radar-based SLAM solution seems appealing, if not as a stand-
alone sensor at least as an important component of a robust,
accurate and cost-effective solution.

Construction of radar maps are discussed in [7] [8] where
the probability hypothesis density (PHD) filter is used to
estimate a map of the environment. In addition, radar-based
SLAM solutions using the PHD filter are presented in [9]
[10]. In most of these methods the landmarks are modelled
as point targets. This assumption is not completely accurate
for landmarks whose size is not negligible compared to their
distance to the sensor [11]. Such landmarks can be more
accurately modelled as extended objects [12]. In [13] a radar
map is built assuming known trajectory of the sensor and
using expectation maximization (EM) [14] and VBEM [15]
methods. The VBEM translates an inference problem to an
optimization one and it is guaranteed to find a local optimum
[15]. This method is computationally efficient and easy to
implement. Furthermore, the VBEM can deal with unknown
number of landmarks and can tackle the uncertainties in the
data associations efficiently.

In this paper, we extend on the ideas in [13] and develop
a radar-based SLAM solution using VBEM. In this algorithm
the joint posterior density of the map, the poses and the data
associations is approximated as a product of three variational
distributions. These distributions are found using the VBEM
method. From the estimated joint posterior density, the pa-
rameters of the map, the data association probabilities and the
poses are inferred. The presented solution is a batch algorithm.

II. PROBLEM FORMULATION

The overall objective is to solve a SLAM problem, that is,
to jointly estimate a map of the environment and the vehicle
trajectory. The map is assumed to be static and is primarily
made up of a set of landmarks that have unknown extensions,
locations and expected number of detections; the map also
describes the distribution over the clutter measurements. The
vehicle is assumed to follow an unknown trajectory and collect
radar measurements at every time instant. We intend to solve
the SLAM problem, by computing the posterior density of
the vehicle trajectory, the map and the data associations,



i.e., p(X1:M ,Z1:M , θ|Y1:M ) where X1:M , Z1:M and Y1:M

denote the poses of the vehicle, the data associations and the
measurements from time 1 to M, respectively, and θ contains
all the parameters that describe the map.

The trajectory of the vehicle is described by its pose at each
time instant. The pose at time m consists of the position of
the vehicle Xp

m, in the global Cartesian coordinate system and
its heading Xφ

m. The movement of the vehicle is expressed as

Xm = Xm−1 + um−1 + vm, (1)

where Xm denotes the vehicle’s pose at time m, um−1 is the
odometry and vm ∼ N (0,Qm) is the odometry noise.

The measurements are assumed to be generated by an
inhomogeneous Poisson process. As a result, the number of
detections at each time instant follows a Poisson distribution
and the location of the measurements is described by an inten-
sity function over the observed space. The intensity function
describes the spatial distribution of the map and is modelled by
a constant clutter level plus a Gaussian mixture. Each compo-
nent of this mixture is referred to as a landmark. Consequently,
the map is denoted by θ = [µ1:K ,Σ1:K , ω1:K , λc] where
µj = [µxj , µ

y
j ], Σj and ωj denote the location of each landmark

in the global Cartesian coordinate system, the spread of the
detections generated by each landmark (the extension of the
landmark) and the expected number of detections from each
landmark, respectively. Additionally, the expected number of
clutter detections is denoted by λc and K is the number
of landmarks. Assuming that the ith measurement at time
m is generated by landmark j, the measurement equation is
expressed as

yim =

[
‖µj + dj −Xp

m‖
µj + dj −Xp

m −Xφ
m

]
+ wm, (2)

where dj ∼ N (0,Σj) describes the extension of the landmark
and wm ∼ N (0,R) is the measurement noise.

The field of view, denoted by f(µj ,Xm), is a function of the
vehicle’s pose and the location of the landmark. We assume
that the associations between landmarks and measurements
are unknown. Consequently, the source of each measurement
could either be clutter or any of the landmarks in the field of
view of the sensor. In this paper, the data association variables
are modelled as binary random variables. Accordingly, zijm
denotes the data association between measurement i and
landmark j at time m and is equal to one if the measurement
is generated by this landmark and zero otherwise.

III. VBEM-SLAM

This paper presents a solution to the SLAM problem based
on the VBEM. The objective is to estimate the posterior
density p(X1:M ,Z1:M , θ|Y1:M ), but since it is intractable to
calculate this density exactly, resorting to approximations is
inevitable. In the VBEM framework, the posterior density is
approximated by a simpler distribution that assumes certain
independencies. The VBEM method optimizes this distribution
so that it is closest to the true posterior in the ”exclusive”

Kullback-Liebler divergence sense [16]. This is equivalent to
maximizing a lower bound on the log marginal likelihood [15].

In this paper, the joint posterior density is approximated by

p(X1:M ,Z1:M , θ,Y1:M ) ≈ qz(Z1:M )qΣ(Σ1:K)qX,θ′(X1:M , θ
′),

(3)

where θ′ = [µ1:K , ω1:K , λc]. In this factorization, the data
associations are considered to be independent from the map
and the poses. This factorization enables us to search for an
optimal posterior density in the KLD sense. More specifically,
we can use a coordinate descent algorithm to analytically
solve for each variational distribution given the other two. The
solution to the minimization of the ”exclusive” KLD between
the two densities in (3) is

qz(Z1:M ) ∝ exp(EqΣ,qX,θ′{log p(X1:M ,Z1:M , θ,Y1:M )})
(4)

qΣ(Σ1:K) ∝ exp(EqZ ,qX,θ′{log p(X1:M ,Z1:M , θ,Y1:M )})
(5)

qX,θ′(X1:M , θ
′) ∝ exp(EqΣ,qZ{log p(X1:M ,Z1:M , θ,Y1:M )}).

(6)

A. Derivation of the joint density

The purpose is to derive the necessary expressions required
for implementing (4)-(6). We begin by expressing the joint
distribution of all variables as a product of two slightly simpler
distributions,

p(X1:M ,Z1:M , θ,Y1:M ) = p(Y1:M ,Z1:M |X1:M , θ)p(X1:M , θ).
(7)

Given that the measurements are collected at M independent
time scans, the complete data likelihood can be factorized as

p(Y1:M ,Z1:M |X1:M , θ) =

M∏
m=1

p(Ym,Zm|Xm, θ), (8)

where each factor can be written as

p(Ym,Zm|Xm, θ) = p(Ym|Zm,Xm, θ)Pr{Zm|Xm, θ}.

Using (2), the likelihood is expressed as

p(Ym|Zm,Xm, θ) =

nm∏
i=1

K∏
j=1

(p(yim|Zm,Xm, θ))
zijm(

1

V
)z
i0
m

where nm is the number of measurements at time m, V is
the sensor observation volume and zi0m denotes the clutter
data association. The probability mass function of the data
associations at each time instant can be written as

Pr{Zm|Xm, θ} = Pr{Zm, nm|Xm, θ}
= Pr{Zm|nm,Xm, θ}Pr{nm|Xm, θ},

where the probability of receiving nm measurements at time
m follows a Poisson distribution

Pr{nm|Xm, θ} = λnmm
e−λm

nm!



with the intensity of λm = λc+
∑
r f(µr,Xm)ωr. Moreover,

Pr{Zm|nm,Xm, θ} =

nm∏
i=1

(
λc
λm

)z
i0
m

K∏
j=1

(
ωjf(µj ,Xm)

λm
)z
ij
m .

To complete the joint density, the prior density of the
vehicle trajectory and the map must be defined. Using (1)
the prior density of the vehicle’s trajectory is expressed as
p(X1:M ) =

∏M
m=1 p(Xm|Xm−1). Additionally, assuming

that the map parameters are independent prior to making
observations, the prior density of the map is described by
p(θ) = p(λc)

∏K
j=1 p(µj)p(Σj)p(ωj), where we assume that

p(θ) = GAM(λc; c
0, e0)

K∏
j=1

N (µj ; µ̄
0
j ,P

0
j )

IW(Σj ; S
0
j , ν

0
j )GAM(ωj ; a

0
j , b

0
j ). (9)

GAM(ω; a, b) denotes a gamma distribution with parameters
a and b, and IW(Σ; S, ν) denotes an inverse Wishart dis-
tribution with parameters S and ν. The prior density of the
extensions is assumed to be Inverse Wishart. This density is
conjugate to a Gaussian likelihood, as such, it provides us
with a tractable solution for estimating the extension of the
objects. The prior density of the weights and the expected
number of clutter measurements are assumed to follow the
Gamma distribution since this density is conjugate to the
Poisson distribution of the expected number of measurements.

B. Simplifying Assumptions and Approximations

An important property of the VBEM algorithm is that
it provides tractable solutions for models belonging to the
conjugate exponential (CE) family [17]. As such, in this paper
the following simplifying assumptions and approximations are
made so that the model remains in the CE family.

First, (2) is linearised using first order Taylor expansion.
The resulting measurement model is

yim = Hxµ

[
Xm

µj

]
+ δijm + Hddj + wm

= Hxµ

[
Xm

µj

]
+ δijm + w′m (10)

where Hxµ and Hd are Jacobians of the measurement model
w.r.t Xm, µj and dj , respectively. δijm is a constant resulting
from the linearisation and w′m ∼ N (0, R̃), where R̃ = R +
HdΣjH

T
d . In this paper, it is assumed that R̃ ≈ HdΣjH

T
d ,

i.e., the measurement noise is negligible compared to the
extension of the landmarks. This assumption allows us to
maintain an inverse Wishart distribution over the extensions.

Second, in each iteration of the algorithm, the field of
view function is approximated using the best available guess
about the vehicles’s pose and the position of the landmarks.
More specifically, at iteration t+1, the field of view function
is approximated by f(Xm, µj) ≈ f(X̂t

m, µ̂
t
j). Moreover, this

function is equal to one if landmark j is in the field of view
of the vehicle at pose Xm and is equal to zero otherwise.

C. The VBEM-SLAM algorithm
In this algorithm, each iteration consists of updating

qz(Z1:M ), qΣ(Σ1:K), and qX,θ′(X1:M , θ
′) according to Equa-

tions (4), (5) and (6), respectively. In order to perform these
calculations, it is assumed that the variational distributions of
the parameters of the map and the poses have the same type
as the one in the joint distribution. That is,

qΣ(Σ1:K) =

K∏
j=1

IW(Σj ; S
q
j , ν

q
j ) (11)

qX,θ′(X1:M , θ
′) = N ([XT

1:M , µ
T
1:K ]T ; [X̄q,T

1:M , µ̄
q,T
1:M ]T ,Wq)

GAM(ωj , a
q
j , b

q
j)GAM(λc, c

q, eq). (12)

Furthermore, the variational distribution of the data associa-
tions has the following form

qz(Z1:M ) =

M∏
m=1

nm∏
i=1

(πi0m)z
i0
m

K∏
j=1

(πijm)z
ij
m , (13)

where πijm is the probability that measurement yim is generated
by landmark j and πi0m is the probability that measurement yim
is clutter. Since each measurement can be generated by either
of the landmarks or is clutter, πi0m +

∑K
j=1 π

ij
m = 1. These

probabilities are calculated using (4), (11) and (12), according
to a similar procedure as the one explained in [13].

Similarly, using (5), (12) and (13), the parameters of
qΣ(Σ1:K) are updated as

νqj = ν0
j +

M∑
m=1

nM∑
i=1

EqZ
{
zijm
}

Sqj = S0
j +

M∑
m=1

nM∑
i=1

EqZ
{
zijm
}

(HT
d )−1

((yim −Hxµ

[
X̄q
m

µ̄qj

]
− δijm)(yim −Hxµ

[
X̄q
m

µ̄qj

]
− δijm)T

+ HxµWq
mjH

T
xµ)H−1

d . (14)

Finally, the parameters of qX,θ′(X1:M , θ
′) are updated using

(6), (11) and (13)

N ([XT
1:M , µ

T
1:K ]T ; [X̄q,T

1:M , µ̄
q,T
1:M ]T ,Wq) =(

M∏
m=1

N (Xm; X̄0
m,Qm)

) K∏
j=1

N (µj ; µ̄
0
j ,P

0
j )


∏
m

∏
i

∏
j

N (yim; Hxµ

[
Xm

µj

]
+ δijm, R̄) (15)

where R̄ = EqΣ
{

R̃
}

, and

aqj = a0
j +

∑
m

∑
i

EqZ
{
zijm
}

bqj = b0j +
∑
m

f(Xm, µj) (16)

cq = c0 +
∑
m

∑
i

EqZ
{
zi0m
}

eq = e0 +M. (17)



IV. SIMULATION AND RESULTS

The presented algorithm is evaluated on a simulated sce-
nario that is depicted in Figure 1. To evaluate the algorithm,
two measures of performance have been used. The estimated
map is compared to the true one using the integrated squared
error (ISE) [18]. Using the ISE measure, all properties of the
map, i.e., position of the landmarks, their weights and their
extensions are accounted for in the evaluation. In addition,
the estimated trajectory is evaluated using root mean square
error (RMSE).

The following parameter values have been used in the
simulations. The prior values for different parameters of the
map are set to S0

j = 6I, ν0
j = 8, a0

j = 0.1, b0j = 0.2,
c0 = 0.05, e0 = 0.1. In addition it is assumed that a
priori the map consists of 74 landmarks whose locations
are uniformly distributed over the environment. The prior
trajectory is generated using noisy odometry. The covariance
of the measurement noise is set to R = diag([σ2

r , σ
2
φ]) where

σr = 0.1m and σφ = 0.5◦ and λc = 1. The sensor’s field of
view has a range of 60m and an angle of ±30◦.

The normalized ISE is depicted in Figure 2. As can be
seen, the ISE improves from 0.94 to 0.29. The RMSE of the
estimated position of the vehicle is illustrated in Figure 3.
This error is decreased from 0.43m to 0.36. Additionally, the
estimated expected number of clutter measurements is 1.9.
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Figure 1. The scenario on which the algorithm is evaluated. The vehicle
starts at position (50,50). The extended landmarks are located by the road.
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Figure 2. The normalized ISE of the estimated map.
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Figure 3. The RMSE of the estimated position.

V. CONCLUSIONS

In this paper, a radar-based SLAM solution using VBEM
is presented. The algorithm is able to jointly estimate the
data associations, the trajectory and the map by iteratively
optimizing the KLD between the estimated and the exact
posterior densities.
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