523 research outputs found

    Memory interference effects in spin glasses

    Full text link
    When a spin glass is cooled down, a memory of the cooling process is imprinted in the spin structure. This memory can be disclosed in a continuous heating measurement of the ac-susceptibility. E.g., if a continuous cooling process is intermittently halted during a certain aging time at one or two intermediate temperatures, the trace of the previous stop(s) is recovered when the sample is continuously re-heated [1]. However, heating the sample above the aging temperature, but keeping it below Tg, erases the memory of the thermal history at lower temperatures. We also show that a memory imprinted at a higher temperature can be erased by waiting a long enough time at a lower temperature. Predictions from two complementary spin glass descriptions, a hierarchical phase space model and a real space droplet picture are contested with these memory phenomena and interference effects. [1] K. Jonason, E. Vincent, J. Hammann, J. P. Bouchaud and P. Nordblad, Phys. Rev. Lett. 31, 3243 (1998).Comment: 7 pages, 1 LaTex file + 5 figures in EPS Revised version of June 17, 1999 (minor changes), to appear in EPJ B around November 9

    Spin Anisotropy and Slow Dynamics in Spin Glasses

    Full text link
    We report on an extensive study of the influence of spin anisotropy on spin glass aging dynamics. New temperature cycle experiments allow us to compare quantitatively the memory effect in four Heisenberg spin glasses with various degrees of random anisotropy and one Ising spin glass. The sharpness of the memory effect appears to decrease continuously with the spin anisotropy. Besides, the spin glass coherence length is determined by magnetic field change experiments for the first time in the Ising sample. For three representative samples, from Heisenberg to Ising spin glasses, we can consistently account for both sets of experiments (temperature cycle and magnetic field change) using a single expression for the growth of the coherence length with time.Comment: 4 pages and 4 figures - Service de Physique de l'Etat Condense CNRS URA 2464), DSM/DRECAM, CEA Saclay, Franc

    Aging phenomena in spin glass and ferromagnetic phases: domain growth and wall dynamics

    Full text link
    We compare aging in a disordered ferromagnet and in a spin glass, by studying the different phases of a reentrant system. We have measured the relaxation of the low-frequency ac susceptibility, in both the ferromagnetic and spin-glass phases of a CdCr_{1.9}In_{0.1}S_4 sample. A restart of aging processes when the temperature is lowered (`chaos-like' effect) is observed in both phases. The memory of previous aging at a higher temperature can be retrieved upon re-heating, but in the ferromagnetic phase it can rapidly be erased by the growth of ferromagnetic domains. We interpret the behaviour observed in the ferromagnetic phase in terms of a combination of domain growth and pinned wall reconformations, and suggest that aging in spin glasses is dominated by such wall reconformation processes.Comment: SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex, France, to appear in Europhys. Lett. (2000

    Modulation of plant growth in vivo and identification of kinase substrates using an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1

    Get PDF
    BACKGROUND: Modulation of protein activity by phosphorylation through kinases and subsequent de-phosphorylation by phosphatases is one of the most prominent cellular control mechanisms. Thus, identification of kinase substrates is pivotal for the understanding of many – if not all – molecular biological processes. Equally, the possibility to deliberately tune kinase activity is of great value to analyze the biological process controlled by a particular kinase. RESULTS: Here we have applied a chemical genetic approach and generated an analog-sensitive version of CDKA;1, the central cell-cycle regulator in Arabidopsis and homolog of the yeast Cdc2/CDC28 kinases. This variant could largely rescue a cdka;1 mutant and is biochemically active, albeit less than the wild type. Applying bulky kinase inhibitors allowed the reduction of kinase activity in an organismic context in vivo and the modulation of plant growth. To isolate CDK substrates, we have adopted a two-dimensional differential gel electrophoresis strategy, and searched for proteins that showed mobility changes in fluorescently labeled extracts from plants expressing the analog-sensitive version of CDKA;1 with and without adding a bulky ATP variant. A pilot set of five proteins involved in a range of different processes could be confirmed in independent kinase assays to be phosphorylated by CDKA;1 approving the applicability of the here-developed method to identify substrates. CONCLUSION: The here presented generation of an analog-sensitive CDKA;1 version is functional and represent a novel tool to modulate kinase activity in vivo and identify kinase substrates. Our here performed pilot screen led to the identification of CDK targets that link cell proliferation control to sugar metabolism, proline proteolysis, and glucosinolate production providing a hint how cell proliferation and growth are integrated with plant development and physiology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-016-0900-7) contains supplementary material, which is available to authorized users

    A new experimental procedure for characterizing quantum effects in small magnetic particle systems

    Full text link
    A new experimental procedure is discussed, which aims at separating thermal from quantum behavior independently of the energy barrier distribution in small particle systems. Magnetization relaxation data measured between 60 mK and 5 K on a sample of nanoparticles is presented. The comparison between experimental data and numerical calculations shows a clear departure from thermal dynamics for our sample, which was not obvious without using the new procedure presented here.Comment: LaTeX source, 6 pages, 5 PostScript figure

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France

    Linear response subordination to intermittent energy release in off-equilibrium aging dynamics

    Full text link
    The interpretation of experimental and numerical data describing off-equilibrium aging dynamics crucially depends on the connection between spontaneous and induced fluctuations. The hypothesis that linear response fluctuations are statistically subordinated to irreversible outbursts of energy, so-called quakes, leads to predictions for averages and fluctuations spectra of physical observables in reasonable agreement with experimental results [see e.g. Sibani et al., Phys. Rev. B74:224407, 2006]. Using simulational data from a simple but representative Ising model with plaquette interactions, direct statistical evidence supporting the hypothesis is presented and discussed in this work. A strict temporal correlation between quakes and intermittent magnetization fluctuations is demonstrated. The external magnetic field is shown to bias the pre-existent intermittent tails of the magnetic fluctuation distribution, with little or no effect on the Gaussian part of the latter. Its impact on energy fluctuations is shown to be negligible. Linear response is thus controlled by the quakes and inherits their temporal statistics. These findings provide a theoretical basis for analyzing intermittent linear response data from aging system in the same way as thermal energy fluctuations, which are far more difficult to measure.Comment: 9 pages, 10 figures. Text improve

    Extraction of the Spin Glass Correlation Length

    Full text link
    The peak of the spin glass relaxation rate, S(t)=d{-M_{TRM}(t,t_w)}/H/{d ln t}, is directly related to the typical value of the free energy barrier which can be explored over experimental time scales. A change in magnetic field H generates an energy E_z={N_s}{X_fc}{H^2} by which the barrier heights are reduced, where X_{fc} is the field cooled susceptibility per spin, and N_s is the number of correlated spins. The shift of the peak of S(t) gives E_z, generating the correlation length, Ksi(t,T), for Cu:Mn 6at.% and CdCr_{1.7}In_{0.3}S_4. Fits to power law dynamics, Ksi(t,T)\propto {t}^{\alpha(T)} and activated dynamics Ksi(t,T) \propto {ln t}^{1/psi} compare well with simulation fits, but possess too small a prefactor for activated dynamics.Comment: 4 pages, 4 figures. Department of Physics, University of California, Riverside, California, and Service de Physique de l'Etat Condense, CEA Saclay, Gif sur Yvette, France. To appear in Phys. Rev. Lett. January 4, 199
    corecore