59 research outputs found

    Detection of five Shiga toxin-producing \u3ci\u3eEscherichia coli\u3c/i\u3e genes with multiplex PCR

    Get PDF
    Escherichia coli serogroup O157 is the pathogen most commonly associated with foodborne disease outbreaks, but epidemiological studies suggest that non-O157 Shiga toxin-producing E. coli (STEC) is a major player as well. The ten most clinically relevant STECs belong to serogroups O26, O103, O111, O145, O157, O91, O113, O128, O45, and O121; but emerging strains, such as O104:H4 that was identified with the 2011 German outbreak, could become more prevalent in the future. A 75-min conventional multiplex PCR assay, IS-5P, targeting the four virulence factors stx1, stx2, eae, and ehxA plus the O157:H7- specific +93 uidA single nucleotide polymorphism was developed to better assess the potential pathogenicity of STEC isolates. All 212 STEC DNAs showed one to five amplification products, while the non- E. coli DNA did not react to this multiplex PCR assay. Enrichment broths obtained from baby spinach, alfalfa sprouts, and cilantro artificially inoculated with O26, O103, and O121 STECs reacted positively to the multiplex assay. Unlike the current FDA BAM 5P PCR, designed for the specific detection of O157:H7, IS-5P will identify potentially harmful O157:H7 and non-O157 STECs so they can be removed from the nation’s food supply

    Detection of five Shiga toxin-producing \u3ci\u3eEscherichia coli\u3c/i\u3e genes with multiplex PCR

    Get PDF
    Escherichia coli serogroup O157 is the pathogen most commonly associated with foodborne disease outbreaks, but epidemiological studies suggest that non-O157 Shiga toxin-producing E. coli (STEC) is a major player as well. The ten most clinically relevant STECs belong to serogroups O26, O103, O111, O145, O157, O91, O113, O128, O45, and O121; but emerging strains, such as O104:H4 that was identified with the 2011 German outbreak, could become more prevalent in the future. A 75-min conventional multiplex PCR assay, IS-5P, targeting the four virulence factors stx1, stx2, eae, and ehxA plus the O157:H7- specific +93 uidA single nucleotide polymorphism was developed to better assess the potential pathogenicity of STEC isolates. All 212 STEC DNAs showed one to five amplification products, while the non- E. coli DNA did not react to this multiplex PCR assay. Enrichment broths obtained from baby spinach, alfalfa sprouts, and cilantro artificially inoculated with O26, O103, and O121 STECs reacted positively to the multiplex assay. Unlike the current FDA BAM 5P PCR, designed for the specific detection of O157:H7, IS-5P will identify potentially harmful O157:H7 and non-O157 STECs so they can be removed from the nation’s food supply

    Recovery and Growth Potential of Listeria monocytogenes in Temperature Abused Milkshakes Prepared from Naturally Contaminated Ice Cream Linked to a Listeriosis Outbreak

    Get PDF
    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 hours. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average level increase per sample at 14 h was 1.15 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case-study

    Consistency and diversity of spike dynamics in the neurons of bed nucleus of Stria Terminalis of the rat: a dynamic clamp study

    Get PDF
    Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific "motifs'' of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization

    Comparative evaluation of direct plating and most probable number for enumeration of low levels of Listeria monocytogenes in naturally contaminated ice cream products

    Get PDF
    AbstractA precise and accurate method for enumeration of low level of Listeria monocytogenes in foods is critical to a variety of studies. In this study, paired comparison of most probable number (MPN) and direct plating enumeration of L. monocytogenes was conducted on a total of 1730 outbreak-associated ice cream samples that were naturally contaminated with low level of L. monocytogenes. MPN was performed on all 1730 samples. Direct plating was performed on all samples using the RAPID'L.mono (RLM) agar (1600 samples) and agar Listeria Ottaviani and Agosti (ALOA; 130 samples). Probabilistic analysis with Bayesian inference model was used to compare paired direct plating and MPN estimates of L. monocytogenes in ice cream samples because assumptions implicit in ordinary least squares (OLS) linear regression analyses were not met for such a comparison. The probabilistic analysis revealed good agreement between the MPN and direct plating estimates, and this agreement showed that the MPN schemes and direct plating schemes using ALOA or RLM evaluated in the present study were suitable for enumerating low levels of L. monocytogenes in these ice cream samples. The statistical analysis further revealed that OLS linear regression analyses of direct plating and MPN data did introduce bias that incorrectly characterized systematic differences between estimates from the two methods

    RAPID TESTING OF FOOD MATRICES FOR \u3ci\u3eBACILLUS CEREUS\u3c/i\u3e ENTEROTOXINS

    Get PDF
    Nine different food products frequently associated with Bacillus cereus outbreaks were chosen as representative matrices to be evaluated with end-point polymerase chain reaction (PCR), enzyme linked immunosorbent assay, lateral flow device and mass spectrometry for detection of enterotoxins associated with human illness. Testing was performed on food portions inoculated with a bacterial strain and incubated at 30C for either 5 h or 24 h. A screening end-point multiplex PCR targeting enterotoxin genes including the emetic toxin and three diarrheal toxins, hemolytic hemolysin BL (Hbl), nonhemoltyic enterotoxin (Nhe), and cytolysin K. Commercially available kits were used to determine the presence/absence of Nhe and Hbl. Finally; a quantitative analysis using mass spectrometry was performed for the detection of the emetic toxin. Definitive results were available after a five hour pre-enrichment in five food products. The following strategy would allow for more efficient testing of surveillance or environmental samples as well as more rapid response time during a foodborne outbreak

    Survival of a serotype 4b strain and a serotype 1/2a strain of Listeria T monocytogenes, isolated from a stone fruit outbreak investigation, on whole stone fruit at 4 °C

    Get PDF
    In the summer of 2014, a multistate outbreak of listeriosis associated with contaminated stone fruit (peach and nectarine) was reported. A serotype 4b variant Listeria monocytogenes (Lm) strain of singleton Sequence Type (ST) 382 was isolated from clinical samples and stone fruit associated with the outbreak. A serotype 1/2b Lm strain of ST5, Clonal Complex 5 was isolated only from outbreak-associated stone fruit, not from clinical samples. Here we investigated the fate of the serotype 4b and 1/2b strains, at two inoculation levels (high level at 3.7 logCFU/fruit and low level at 2.7 logCFU/fruit), on the surfaces of white peach, yellow peach and yellow nectarine stored at 4 °C for 26 days. After rinsing the fruits, we determined the Lm levels in the rinsates and on the peels. We enumerated Lm using a direct plating method and compared two chromogenic agars. The Lm populations rapidly declined in the first 3 days and then declined more slowly until Day 19/21. The maximum decline was 1.6 logCFU/fruit on yellow peach inoculated with serotype 4b at high level. For fruits inoculated with high-level Lm, the lowest level of Lm (1.7 logCFU/fruit) was observed on for white peach inoculated with serotype 1/2b, and the highest level of Lm (2.6 logCFU/fruit) on Day 19/21 was observed on yellow peach inoculated with the serotype 1/2b strain. For fruits inoculated with low-level Lm, the lowest level of Lm (1.3 logCFU/fruit) was observed on yellow nectarine inoculated with either the serotype 4b or 1/2b strain, and the highest level of Lm (1.7 logCFU/fruit) on Day 19/21 was observed on yellow peach inoculated with ST382. The D-values ranged from 15 days to 28 days. Lm remained viable until the end of storage (Day 26), but the levels were not sig- nificantly different from those on Day 19/21. The types of stone fruit and Lm strain did not significantly affect the survival of Lm. These results demonstrate that contaminated stone fruit can carry a potential risk for causing listeriosis in susceptible populations. Comparison of direct plating results using two chromogenic agars showed that RAPID\u27 L. mono and Agar Listeria Ottavani & Agosti performed equivalently for enumerating Lm on stone fruit. The fruit rinsing recovered 80% to 84% of Lm from fruit surfaces
    • …
    corecore