12 research outputs found

    Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output

    Get PDF
    Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash–Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid

    ELSA: a new local indicator for spatial association

    Get PDF
    There are several local indicators of spatial association (LISA) that allow exploration of local patterns in spatial data. Despite numerous situations where categorical variables are encountered, few attempts have been devoted to the development of methods to explore the local spatial pattern in categorical data. To our knowledge, there is no indicator of local spatial association that can be used for both continuous and categorical data. We introduce ELSA, which can be used for exploring and testing local spatial association for continuous and categorical variables. We provide the R-package elsa for making these computations

    Unbalanced development characteristics and driving mechanisms of regional urban spatial form: a case study of Jiangsu Province, China

    Get PDF
    Unbalanced regional development is widespread, and the imbalance of regional development in developing countries with rapid urbanization is increasingly apparent. This threatens the sustainable development of the region. Promoting the coordinated development of the region has become a hot spot of scientific research and a major practical need. Taking 99 counties of Jiangsu Province China, a typical coastal plain region, as the basic research unit, this paper explores the unbalanced development characteristics of the regional urban spatial form using three indicators: urban spatial expansion size, development intensity, and distribution aggregation degree. Then, their driving mechanisms were evaluated using spatial autocorrelation analysis, Pearson correlation analysis, linear regression, and geographically weighted regression. Our results found that the areas with larger urban spatial expansion size and development intensity were mainly concentrated in southern Jiangsu, where there was a positive spatial correlation between them. We found no agglomeration phenomenon in urban spatial distribution aggregation degree. From the perspective of driving factors: economics was the main driving factor of urban spatial expansion size; urbanization level and urbanization quality were the main driving factors of urban spatial development intensity. Natural landform and urbanization level are the main driving factors of urban spatial distribution aggregation degree. Finally, we discussed the optimization strategy of regional coordinated development. The quality of urbanization development and regional integration should be promoted in Southern Jiangsu. The level of urbanization development should be improved relying on rapid transportation to develop along the axis in central Jiangsu. The economic size should be increased, focusing on the expansion of the urban agglomeration in northern Jiangsu. This study will enrich the perspective of research on the characteristics and mechanisms of regional urban spatial imbalance, and helps to optimize and regulate the imbalance of regional urban development from multiple perspectives

    Integrating remote sensing and geospatial big data for urban land use mapping: a review

    Get PDF
    Remote Sensing (RS) has been used in urban mapping for a long time; however, the complexity and diversity of urban functional patterns are difficult to be captured by RS only. Emerging Geospatial Big Data (GBD) are considered as the supplement to RS data, and help to contribute to our understanding of urban lands from physical aspects (i.e., urban land cover) to socioeconomic aspects (i.e., urban land use). Integrating RS and GBD could be an effective way to combine physical and socioeconomic aspects with great potential for high-quality urban land use classification. In this study, we reviewed the existing literature and focused on the state-of-the-art and perspective of the urban land use categorization by integrating RS and GBD. Specifically, the commonly used RS features (e.g., spectral, textural, temporal, and spatial features) and GBD features (e.g., spatial, temporal, semantic, and sequence features) were identified and analyzed in urban land use classification. The integration strategies for RS and GBD features were categorized into feature-level integration (FI) and decision-level integration (DI). To be more specific, the FI method integrates the RS and GBD features and classifies urban land use types using the integrated feature sets; the DI method processes RS and GBD independently and then merges the classification results based on decision rules. We also discussed other critical issues, including analysis unit setting, parcel segmentation, parcel labeling of land use types, and data integration. Our findings provide a retrospect of different features from RS and GBD, strategies of RS and GBD integration, and their pros and cons, which could help to define the framework for future urban land use mapping and better support urban planning, urban environment assessment, urban disaster monitoring and urban traffic analysis

    Decision-level and feature-level integration of remote sensing and geospatial big data for urban land use mapping

    Get PDF
    Information about urban land use is important for urban planning and sustainable development. The emergence of geospatial big data (GBD), increased the availability of remotely sensed (RS) data and the development of new methods for data integration to provide new opportunities for mapping types of urban land use. However, the modes of RS and GBD integration are diverse due to the differences in data, study areas, classifiers, etc. In this context, this study aims to summarize the main methods of data integration and evaluate them via a case study of urban land use mapping in Hangzhou, China. We first categorized the RS and GBD integration methods into decision-level integration (DI) and feature-level integration (FI) and analyzed their main differences by reviewing the existing literature. The two methods were then applied for mapping urban land use types in Hangzhou city, based on urban parcels derived from the OpenStreetMap (OSM) road network, 10 m Sentinel-2A images, and points of interest (POI). The corresponding classification results were validated quantitatively and qualitatively using the same testing dataset. Finally, we illustrated the advantages and disadvantages of both approaches via bibliographic evidence and quantitative analysis. The results showed that: (1) The visual comparison indicates a generally better performance of DI-based classification than FI-based classification; (2) DI-based urban land use mapping is easy to implement, while FI-based land use mapping enables the mixture of features; (3) DI-based and FI-based methods can be used together to improve urban land use mapping, as they have different performances when classifying different types of land use. This study provides an improved understanding of urban land use mapping in terms of the RS and GBD integration strategy

    Spatiotemporal patterns and environmental drivers of human echinococcoses over a twenty-year period in Ningxia Hui Autonomous Region, China

    Get PDF
    Background Human cystic (CE) and alveolar (AE) echinococcoses are zoonotic parasitic diseases that can be influenced by environmental variability and change through effects on the parasites, animal intermediate and definitive hosts, and human populations. We aimed to assess and quantify the spatiotemporal patterns of human echinococcoses in Ningxia Hui Autonomous Region (NHAR), China between January 1994 and December 2013, and examine associations between these infections and indicators of environmental variability and change, including large-scale landscape regeneration undertaken by the Chinese authorities. Methods Data on the number of human echinococcosis cases were obtained from a hospital-based retrospective survey conducted in NHAR for the period 1 January 1994 through 31 December 2013. High-resolution imagery from Landsat 4/5-TM and 8-OLI was used to create single date land cover maps. Meteorological data were also collected for the period January 1980 to December 2013 to derive time series of bioclimatic variables. A Bayesian spatio-temporal conditional autoregressive model was used to quantify the relationship between annual cases of CE and AE and environmental variables. Results Annual CE incidence demonstrated a negative temporal trend and was positively associated with winter mean temperature at a 10-year lag. There was also a significant, nonlinear effect of annual mean temperature at 13-year lag. The findings also revealed a negative association between AE incidence with temporal moving averages of bareland/artificial surface coverage and annual mean temperature calculated for the period 11–15 years before diagnosis and winter mean temperature for the period 0–4 years. Unlike CE risk, the selected environmental covariates accounted for some of the spatial variation in the risk of AE. Conclusions The present study contributes towards efforts to understand the role of environmental factors in determining the spatial heterogeneity of human echinococcoses. The identification of areas with high incidence of CE and AE may assist in the development and refinement of interventions for these diseases, and enhanced environmental change risk assessment.We acknowledge financial support by the National Health and Medical Research Council (NHMRC) of Australia (APP1009539). AMCR is a PhD Candidate supported by a Postgraduate Award from The Australian National University, ACAC is a NHMRC Senior Research Fellow, DPM is a NHMRC Senior Principal Research Fellow and DJG is a NHMRC Career Development Fellow

    Earth Observation, Spatial Data Quality, and Neglected Tropical Diseases

    No full text
    Earth observation (EO) is the use of remote sensing and in situ observations to gather data on the environment. It finds increasing application in the study of environmentally modulated neglected tropical diseases (NTDs). Obtaining and assuring the quality of the relevant spatially and temporally indexed EO data remain challenges. Our objective was to review the Earth observation products currently used in studies of NTD epidemiology and to discuss fundamental issues relating to spatial data quality (SDQ), which limit the utilization of EO and pose challenges for its more effective use. We searched Web of Science and PubMed for studies related to EO and echinococossis, leptospirosis, schistosomiasis, and soil-transmitted helminth infections. Relevant literature was also identified from the bibliographies of those papers.We found that extensive use is made of EO products in the study of NTD epidemiology; however, the quality of these products is usually given little explicit attention. We review key issues in SDQ concerning spatial and temporal scale, uncertainty, and the documentation and use of quality information. We give examples of how these issues may interact with uncertainty in NTD data to affect the output of an epidemiological analysis. We conclude that researchers should give careful attention to SDQ when designing NTD spatial- epidemiological studies. This should be used to inform uncertainty analysis in the epidemiological study. SDQ should be documented and made available to other researchers

    Geospatial Mapping of Soil Organic Carbon Using Regression Kriging and Remote Sensing

    Get PDF
    Geo-spatial mapping of soil organic carbon using regression kriging was performed for Lalo khala sub-watershed (a part of Solani watershed) located in western Uttar Pradesh, India. Soil organic carbon was predicted using eight predictor variables derived from the advanced space borne thermal emission and reflection radiometer satellite images and digital elevation model. The soil organic carbon was determined in 248 soil samples collected randomly within a 300 m(2) grid overlaid on the study area. Out of the eight predictor variables used in simple regression, the normalized difference vegetation index has the maximum correlation with the soil organic carbon (0.64) followed by vegetation temperature condition index (0.60), brightness index (- 0.60), greenness index (0.57) and wetness index (0.51). Standardized principle components of the predictor variables were used in the prediction model so as to address the multicollinearity problem. The regression kriging predicted SOC value ranged from 0.19 to 1.93% with a mean value of 0.64 and standard deviation of 0.29. The SOC values were higher in upper piedmont with moderate forest followed by Siwalik hills while low values were found in the upper alluvial plains. The RMSE of the predicted SOC map was only 0.196 indicating the closeness of predicted values to the observed values. Regression kriging predicted SOC map can be used for spatial agriculture planning and consider as an ideal input for spatially distributed models. The higher efforts for its preparation are justified when quality, spatial distribution and accuracy are considered
    corecore