1,099 research outputs found

    Soil physical conditions and crop production

    Get PDF
    1a. Differences in water balance and resultant crop growth related to soil structure: Merredin red brown solonized earth. 1b. Soil structure effects on crop growth (Merredin). 77M13, 77M56. 2. Water balance studies under wheat on Wongan loamy sand (82WH8

    Pressure-induced superconductivity in the giant Rashba system BiTeI

    Full text link
    At ambient pressure, BiTeI is the first material found to exhibit a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ~40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with Tc values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute Tc and find that our data is consistent with phonon-mediated superconductivity.Comment: 7 pages, 7 figure

    Alternative route to charge density wave formation in multiband systems

    Full text link
    Charge and spin density waves, periodic modulations of the electron and magnetization densities, respectively, are among the most abundant and non-trivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems such as the iron based superconductors

    Studies on the Weak Itinerant Ferromagnet SrRuO3 under High Pressure to 34 GPa

    Full text link
    The dependence of the Curie temperature Tc on nearly hydrostatic pressure has been determined to 17.2 GPa for the weak itinerant ferromagnetic SrRuO3 in both polycrystalline and single-crystalline form. Tc is found to decrease under pressure from 162 K to 42.7 K at 17.2 GPa in nearly linear fashion at the rate dTc/dP = -6.8 K/GPa. No superconductivity was found above 4 K in the pressure range 17 to 34 GPa. Room-temperature X-ray diffraction studies to 25.3 GPa reveal no structural phase transition but indicate that the average Ru-O-Ru bond angle passes through a minimum near 15 GPa. The bulk modulus and its pressure derivative were determined to be B =192(3) GPa and B' = 5.0(3), respectively. Parallel ac susceptibility studies on polycrystalline CaRuO3 at 6 and 8 GPa pressure found no evidence for either ferromagnetism or superconductivity above 4 K

    Probable causes of increasing brucellosis in free-ranging elk of the Greater Yellowstone Ecosystem

    Get PDF
    While many wildlife species are threatened, some populations have recovered from previous Overexploitation, and data linking these population increases with disease dynamics are limited. We present data suggesting that free-ranging elk (Cervus elaphus) are a maintenance host for Brucella abortus in new areas of the Greater Yellowstone Ecosystem (GYE). Brucellosis seroprevalence in free-ranging elk increased from 0-7% in 1991-1992 to 8 20% in 2006-2007 in four of six herd units around the GYE. These levels of brucellosis are comparable to some herd units where elk are artificially aggregated on supplemental feeding grounds. There are several possible mechanisms for this increase that we evaluated using statistical and population modeling approaches. Simulations of an age-structured population model suggest that the observed levels of seroprevalence are unlikely to be sustained by dispersal from supplemental feeding areas with relatively high seroprevalence or an older age structure. Increases in brucellosis seroprevalence and the total elk population size in areas with feeding grounds have not been statistically detectable. Meanwhile, the rate of seroprevalence increase outside the feeding grounds was related to the population size and density of each herd unit. Therefore, the data suggest that enhanced elk-to-elk transmission in free-ranging populations may be occurring due to larger winter elk aggregations. Elk populations inside and outside of the GYE that traditionally did not maintain brucellosis may now be at risk due to recent population increases. In particular, some neighboring populations of Montana elk were 5-9 times larger in 2007 than in the 1970s, with some aggregations comparable to the Wyoming feeding-ground populations. Addressing the unintended consequences of these increasing populations is complicated by limited hunter access to private lands, which places many ungulate populations out of administrative control. Agency-landowner hunting access partnerships and the protection of large predators are two management strategies that may be used to target high ungulate densities in private refuges and reduce the current and future burden of disease

    Migration of northern Yellowstone elk: implications of spatial structuring

    Get PDF
    Migration can enhance survival and recruitment of mammals by increasing access to higher-quality forage or reducing predation risk, or both. We used telemetry locations collected from 140 adult female elk during 2000– 2003 and 2007–2008 to identify factors influencing the migration of northern Yellowstone elk. Elk wintered in 2 semidistinct herd segments and migrated 10–140 km to at least 12 summer areas in Yellowstone National Park (YNP) and nearby areas of Montana. Spring migrations were delayed after winters with increased snow pack, with earlier migration in years with earlier vegetation green-up. Elk wintering at lower elevations outside YNP migrated an average of 13 days earlier than elk at higher elevations. The timing of autumn migrations varied annually, but elk left their summer ranges at about the same time regardless of elevation, wolf numbers, or distance to their wintering areas. Elk monitored for multiple years typically returned to the same summer (96% fidelity, n 5 52) and winter (61% fidelity, n 5 41) ranges. Elk that wintered at lower elevations in or near the northwestern portion of the park tended to summer in the western part of YNP (56%), and elk that wintered at higher elevations spent summer primarily in the eastern and northern parts of the park (82%). Elk did not grossly modify their migration timing, routes, or use areas after wolf restoration. Elk mortality was low during summer and migration (8 of 225 elk-summers). However, spatial segregation and differential mortality and recruitment between herd segments on the northern winter range apparently contributed to a higher proportion of the elk population wintering outside the northwestern portion of YNP and summering in the western portion of the park. This change could shift wolf spatial dynamics more outside YNP and increase the risk of transmission of brucellosis from elk to cattle north of the park
    • …
    corecore