19,734 research outputs found

    Fisher Information and Kinetic-energy Functionals: A Dequantization Approach

    Full text link
    We strengthen the connection between Information Theory and quantum-mechanical systems using a recently developed dequantization procedure whereby quantum fluctuations latent in the quantum momentum are suppressed. The dequantization procedure results in a decomposition of the quantum kinetic energy as the sum of a classical term and a purely quantum term. The purely quantum term, which results from the quantum fluctuations, is essentially identical to the Fisher information. The classical term is complementary to the Fisher information and, in this sense, it plays a role analogous to that of the Shannon entropy. We demonstrate the kinetic energy decomposition for both stationary and nonstationary states and employ it to shed light on the nature of kinetic-energy functionals.Comment: 13 pages, 3 figures. To appear in J. Comput. Appl. Mat

    Energy and urban built form: an empirical and statistical approach

    Get PDF
    The geometrical forms of buildings have important effects on their use of energy. These relationships are explored at the scale of the entire non-domestic building stock of London. A three-dimensional digital model of the city is used to make a series of geometrical measures: building volume, exposed surface area (walls plus roof) and plan depth. These are compared with figures for the consumption of gas and electricity published by the UK Department of Energy and Climate Change (DECC). The comparisons are made at different levels of spatial aggregation, from boroughs to census districts. Strong correlations are demonstrated between exposed surface area and both gas and electricity use. The analysis also provides some evidence of a sharp increase in electricity use in districts with buildings whose depth in plan exceeds 14 m (in which air-conditioning and permanent artificial lighting are typically required). A multiple regression model is used to measure the contribution of these effects to total energy use, as compared with floor area, activities and number of employees

    Designing Carbon Taxation to Protect Low-Income Households

    Get PDF
    Would it be possible to increase carbon taxes on household energy use and transport, while protecting low-income households from negative impacts

    On the generalized continuity equation

    Full text link
    A generalized continuity equation extending the ordinary continuity equation has been found using quanternions. It is shown to be compatible with Dirac, Schrodinger, Klein-Gordon and diffusion equations. This generalized equation is Lorentz invariant. The transport properties of electrons are found to be governed by Schrodinger-like equation and not by the diffusion equation.Comment: 9 Latex pages, no figure

    Ab initio calculations on the ground and excited states of BeOH and MgOH

    Get PDF
    Journal URL: http://jcp.aip.org

    Ricci flow for homogeneous compact models of the universe

    Full text link
    Using quaternions, we give a concise derivation of the Ricci tensor for homogeneous spaces with topology of the 3-dimensional sphere. We derive explicit and numerical solutions for the Ricci flow PDE and discuss their properties. In the collapse (or expansion) of these models, the interplay of the various components of the Ricci tensor are studied. We dedicate this paper to honor the work of Josh Goldberg.Comment: 18 pages, 2 figure

    Interplay between one-dimensional confinement and crystallographic anisotropy in ballistic hole quantum wires

    Full text link
    We study the Zeeman splitting in induced ballistic 1D quantum wires aligned along the [233] and [011] axes of a high mobility (311)A undoped heterostructure. Our data shows that the g-factor anisotropy for magnetic fields applied along the high symmetry [011] direction can be explained by the 1D confinement only. However when the magnetic field is along [233] there is an interplay between the 1D confinement and 2D crystal anisotropy. This is highlighted for the [233] wire by an unusual non-monotonic behavior of the g-factor as the wire is made narrower

    Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices

    Get PDF
    The study of electron motion in semiconductor billiards has elucidated our understanding of quantum interference and quantum chaos. The central assumption is that ionized donors generate only minor perturbations to the electron trajectories, which are determined by scattering from billiard walls. We use magnetoconductance fluctuations as a probe of the quantum interference and show that these fluctuations change radically when the scattering landscape is modified by thermally-induced charge displacement between donor sites. Our results challenge the accepted understanding of quantum interference effects in nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review
    corecore