32,445 research outputs found
Research to develop and define concepts for reliable control sensors - The solid state rate sensors Final report
Solid state device for sensing angular rate by detecting presence of coriolis force
Development of a magnetically suspended momentum wheel
An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs
Measuring the galaxy power spectrum with future redshift surveys
Precision measurements of the galaxy power spectrum P(k) require a data
analysis pipeline that is both fast enough to be computationally feasible and
accurate enough to take full advantage of high-quality data. We present a
rigorous discussion of different methods of power spectrum estimation, with
emphasis on the traditional Fourier method, the linear (Karhunen-Loeve; KL),
and quadratic data compression schemes, showing in what approximations they
give the same result. To improve speed, we show how many of the advantages of
KL data compression and power spectrum estimation may be achieved with a
computationally faster quadratic method. To improve accuracy, we derive
analytic expressions for handling the integral constraint, since it is crucial
that finite volume effects are accurately corrected for on scales comparable to
the depth of the survey. We also show that for the KL and quadratic techniques,
multiple constraints can be included via simple matrix operations, thereby
rendering the results less sensitive to galactic extinction and mis-estimates
of the radial selection function. We present a data analysis pipeline that we
argue does justice to the increases in both quality and quantity of data that
upcoming redshift surveys will provide. It uses three analysis techniques in
conjunction: a traditional Fourier approach on small scales, a pixelized
quadratic matrix method on large scales and a pixelized KL eigenmode analysis
to probe anisotropic effects such as redshift-space distortions.Comment: Major revisions for clarity. Matches accepted ApJ version. 23 pages,
with 2 figs included. Color figure and links at
http://www.sns.ias.edu/~max/galpower.html (faster from the US), from
http://www.mpa-garching.mpg.de/~max/galpower.html (faster from Europe) or
from [email protected]
Power Spectrum Correlations Induced by Non-Linear Clustering
Gravitational clustering is an intrinsically non-linear process that
generates significant non-Gaussian signatures in the density field. We consider
how these affect power spectrum determinations from galaxy and weak-lensing
surveys. Non-Gaussian effects not only increase the individual error bars
compared to the Gaussian case but, most importantly, lead to non-trivial
cross-correlations between different band-powers. We calculate the
power-spectrum covariance matrix in non-linear perturbation theory (weakly
non-linear regime), in the hierarchical model (strongly non-linear regime), and
from numerical simulations in real and redshift space. We discuss the impact of
these results on parameter estimation from power spectrum measurements and
their dependence on the size of the survey and the choice of band-powers. We
show that the non-Gaussian terms in the covariance matrix become dominant for
scales smaller than the non-linear scale, depending somewhat on power
normalization. Furthermore, we find that cross-correlations mostly deteriorate
the determination of the amplitude of a rescaled power spectrum, whereas its
shape is less affected. In weak lensing surveys the projection tends to reduce
the importance of non-Gaussian effects. Even so, for background galaxies at
redshift z=1, the non-Gaussian contribution rises significantly around l=1000,
and could become comparable to the Gaussian terms depending upon the power
spectrum normalization and cosmology. The projection has another interesting
effect: the ratio between non-Gaussian and Gaussian contributions saturates and
can even decrease at small enough angular scales if the power spectrum of the
3D field falls faster than 1/k^2.Comment: 34 pages, 15 figures. Revised version, includes a clearer explanation
of why the hierarchical ansatz does not provide a good model of the
covariance matrix in the non-linear regime, and new constraints on the
amplitudes Ra and Rb for general 4-pt function configurations in the
non-linear regim
Determination of the Baryon Density from Large Scale Galaxy Redshift Surveys
We estimate the degree to which the baryon density, , can be
determined from the galaxy power spectrum measured from large scale galaxy
redshift surveys, and in particular, the Sloan Digital Sky Survey. A high
baryon density will cause wiggles to appear in the power spectrum, which should
be observable at the current epoch. We assume linear theory on scales and do not include the effects of redshift distortions, evolution,
or biasing. With an optimum estimate of to ,
the uncertainties in are roughly 0.07 and 0.016 in flat
and open () cosmological models, respectively. This result
suggests that it should be possible to test for consistency with big bang
nucleosynthesis estimates of if we live in an open universe.Comment: 23 Pages, 10 Postscript figure
Radial Redshift Space Distortions
The radial component of the peculiar velocities of galaxies cause
displacements in their positions in redshift space. We study the effect of the
peculiar velocities on the linear redshift space two point correlation
function. Our analysis takes into account the radial nature of the redshift
space distortions and it highlights the limitations of the plane parallel
approximation. We consider the problem of determining the value of \beta and
the real space two point correlation function from the linear redshift space
two point correlation function. The inversion method proposed here takes into
account the radial nature of the redshift space distortions and can be applied
to magnitude limited redshift surveys that have only partial sky coverage.Comment: 26 pages including 11 figures, to appear in Ap
An Inversion Method for Measuring Beta in Large Redshift Surveys
A precision method for determining the value of Beta= Omega_m^{0.6}/b, where
b is the galaxy bias parameter, is presented. In contrast to other existing
techniques that focus on estimating this quantity by measuring distortions in
the redshift space galaxy-galaxy correlation function or power spectrum, this
method removes the distortions by reconstructing the real space density field
and determining the value of Beta that results in a symmetric signal. To remove
the distortions, the method modifies the amplitudes of a Fourier plane-wave
expansion of the survey data parameterized by Beta. This technique is not
dependent on the small-angle/plane-parallel approximation and can make full use
of large redshift survey data. It has been tested using simulations with four
different cosmologies and returns the value of Beta to +/- 0.031, over a factor
of two improvement over existing techniques.Comment: 16 pages including 6 figures Submitted to The Astrophysical Journa
Recommended from our members
Development and implementation of a vehicle-pedestrian conflict analysis method: Adaptation of a vehicle-vehicle technique
This paper examines the development, use, and evaluation of a new traffic conflict analysis technique that specifically addresses pedestrian-vehicle conflicts with the intention of being applicable to shared-space environments. The method is based on an existing, well-established, and widely used vehicle-vehicle conflict analysis technique, but is adapted to consider the movement of pedestrians, which differs significantly from that of vehicles. The new method is then implemented on the Exhibition Road site of West London with the use of video data collected from locations with a potentially high concentration of vehicle-pedestrian conflicts, and the results of the analysis are presented. Finally, the results are compared with those obtained by other conflict analysis techniques and also against accident data to assess not only the accuracy but also the functionality of the new technique
Non-ancient solution of the Ricci flow
For any complete noncompact Khler manifold with nonnegative and
bounded holomorphic bisectional curvature,we provide the necessary and
sufficient condition for non-ancient solution to the Ricci flow in this paper.Comment: seven pages, latex fil
- …