57 research outputs found

    Neurodegenerative brain changes are associated with area deprivation in the United Kingdom: findings from the Brains for Dementia Research study

    Get PDF
    Socioeconomic disadvantage is associated with greater risk of dementia. This has been theorised to reflect inequalities in cognitive reserve, healthcare access, lifestyle, and other health factors which may contribute to the clinical manifestation of dementia. We aimed to assess whether area deprivation in the United Kingdom was associated with greater risk or severity of the specific neurodegenerative diseases which lead to dementia in a multi-centre cohort with autopsy assessment. Participants underwent clinical assessment prior to brain tissue donation post-mortem. Each then underwent detailed, standardised neuropathological assessment. National area deprivation statistics were derived for each participant’s neighbourhood, for use as a predictor in binary and ordinal logistic models assessing the respective presence and severity of staging of key neuropathological changes, adjusting for theorised confounders. Individuals from among the 20% most deprived neighbourhoods in the United Kingdom had significantly higher neurofibrillary tangle and neuritic plaque staging, and increased risk of cerebral amyloid angiopathy. These findings were not explained by a greater risk of diabetes or hypertension, APOE genotype, alcohol misuse or tobacco smoking, sex, or age differences. A sensitivity analysis conditioning on baseline cognitive impairment did not meaningfully change the observed association. Socioeconomic disadvantage may contribute to dementia incidence through a greater severity of specific neuropathological changes (neurofibrillary tangles, neuritic plaques, and cerebral amyloid angiopathy), independent of other indirect influences. Mechanisms through which deprivation is associated with these require further exploration

    Associations between multimorbidity and neuropathology in dementia: a case for considering functional cognitive disorders, psychiatric illness, and dementia mimics

    Get PDF
    Cognitive impairment in older people has a variety of underlying causes. In addition to neurodegenerative causes such as Alzheimer's disease, a dementia-like cognitive disorder may appear due to non-degenerative factors. Multimorbidity has been previously associated with clinical dementia risk, though whether this was due to greater risk of dementia-related neuropathology, or other factors that mimic dementia, was unclear. We provide evidence that physical multimorbidity is not associated with greater pathological changes at autopsy. Other factors related to multimorbidity and cognitive impairments may be important targets for investigation, such as functional cognitive disorders, primary psychiatric disorders (depression, anxiety, psychosis) and polypharmacy

    Cholinergic white matter pathways in dementia with Lewy bodies and Alzheimer's disease

    Get PDF
    Dementia with Lewy bodies and Alzheimer's disease show early degeneration of the cholinergic nucleus basalis of Meynert. However, how white matter projections between the nucleus basalis of Meynert and the cortex are altered in neurodegenerative disease is unknown. Tractography of white matter pathways originating from the nucleus basalis of Meynert was performed using diffusion-weighted imaging in 46 Alzheimer's disease dementia, 48 dementia with Lewy bodies, 35 mild cognitive impairment with Alzheimer's disease, 38 mild cognitive impairment with Lewy bodies, and 71 controls. Mean diffusivity of the resulting pathways was compared between groups and related to cognition, attention, functional EEG changes, and dementia conversion in the mild cognitive impairment groups. We successfully tracked a medial and a lateral pathway from the nucleus basalis of Meynert. Mean diffusivity of the lateral pathway was higher in both dementia and mild cognitive impairment groups than controls (all P < 0.03). In the patient groups, increased mean diffusivity of this pathway was related to more impaired global cognition (β=-0.22, P = 0.06) and worse performance on an attention task (β = 0.30, P = 0.03). In patients with mild cognitive impairment, loss of integrity of both nucleus basalis of Meynert pathways was associated with increased risk of dementia progression (hazard ratio [95% confidence interval], medial pathway: 2.51 [1.24-5.09]; lateral pathway: 2.54 [1.24-5.19]). Nucleus basalis of Meynert volume was reduced in all clinical groups compared to controls (all P < 0.001), but contributed less strongly to cognitive impairment and was not associated with attention or dementia conversion. EEG slowing in the patient groups as assessed by a decrease in dominant frequency was associated with smaller nucleus basalis of Meynert volumes (β = 0.22, P = 0.02) and increased mean diffusivity of the lateral pathway (β=-0.47, P = 0.003). We show that degeneration of the cholinergic nucleus basalis of Meynert in Alzheimer's disease and dementia with Lewy bodies is accompanied by an early reduction in integrity of white matter projections that originate from this structure. This is more strongly associated with cognition and attention than the volume of the nucleus basalis of Meynert itself and might be an early indicator of increased risk of dementia conversion in people with mild cognitive impairment

    Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer's disease

    Get PDF
    INTRODUCTION: Degeneration of cortical cholinergic projections from the nucleus basalis of Meynert (NBM) is characteristic of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), whereas involvement of cholinergic projections from the pedunculopontine nucleus (PPN) to the thalamus is less clear. METHODS: We studied both cholinergic projection systems using a free water-corrected diffusion tensor imaging (DTI) model in the following cases: 46 AD, 48 DLB, 35 mild cognitive impairment (MCI) with AD, 38 MCI with Lewy bodies, and 71 controls. RESULTS: Free water in the NBM-cortical pathway was increased in both dementia and MCI groups compared to controls and associated with cognition. Free water along the PPN-thalamus tract was increased only in DLB and related to visual hallucinations. Results were largely replicated in an independent cohort. DISCUSSION: While NBM-cortical projections degenerate early in AD and DLB, the thalamic cholinergic input from the PPN appears to be more selectively affected in DLB and might associate with visual hallucinations. Highlights: Free water in the NBM-cortical cholinergic pathways is increased in AD and DLB. NBM-cortical pathway integrity is related to overall cognitive performance. Free water in the PPN-thalamus cholinergic pathway is only increased in DLB, not AD. PPN-thalamus pathway integrity might be related to visual hallucinations in DLB
    corecore