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Abstract
Previous resting-state fMRI studies in dementia with Lewy bodies have described changes in functional connectivity in net-
works related to cognition, motor function, and attention as well as alterations in connectivity dynamics. However, whether 
these changes occur early in the course of the disease and are already evident at the stage of mild cognitive impairment is not 
clear. We studied resting-state fMRI data from 31 patients with mild cognitive impairment with Lewy bodies compared to 28 
patients with mild cognitive impairment due to Alzheimer’s disease and 24 age-matched controls. We compared the groups 
with respect to within- and between-network functional connectivity. Additionally, we applied two different approaches to 
study dynamic functional connectivity (sliding-window analysis and leading eigenvector dynamic analysis). We did not find 
any significant changes in the mild cognitive impairment groups compared to controls and no differences between the two 
mild cognitive impairment groups, using static as well as dynamic connectivity measures. While patients with mild cognitive 
impairment with Lewy bodies already show clear functional abnormalities on EEG measures, the fMRI analyses presented 
here do not appear to be sensitive enough to detect such early and subtle changes in brain function in these patients.

Keywords Resting-state fMRI · Dynamic connectivity · Sliding-window analysis · Leading eigenvector dynamic analysis · 
Lewy body dementia · Alzheimer’s disease

Introduction

Dementia with Lewy bodies (DLB) is the second most com-
mon form of neurodegenerative dementia after Alzheimer’s 
disease (AD) [1, 2]. Similar to AD, the dementia stage is 
often preceded by a period in which cognitive decline is 
already present, but independence in activities of daily living 
is still preserved [3, 4]. This is referred to as mild cognitive 
impairment with Lewy bodies (MCI-LB). Patients with DLB 
and MCI-LB often show transient changes in cognition such 
as fluctuations in attention, arousal, and alertness that mostly 

occur spontaneously without any situational explanation [5, 
6]. Furthermore, a majority of patients experience complex 
visual hallucinations that recur over time [7]. Another char-
acteristic of DLB that is related to temporal aspects of brain 
function is a slowing of thinking and information process-
ing referred to as bradyphrenia [8]. Overall, the transient 
nature of these symptoms suggests that functional rather 
than structural alterations might play a greater role in their 
aetiology [9].

The analysis of resting-state fMRI data allows study of 
changes in the functional architecture of the brain that are 
associated with neurodegenerative diseases. In particular, 
resting-state fMRI can be used to characterise large-scale 
functional networks, so-called resting-state networks (RSN), 
which are a set of spatially distinct brain regions that show 
coordinated activity in the absence of a specific task [10, 
11]. Studying functional connectivity within and between 
these brain networks can shed light on spatial and tempo-
ral aspects of brain function in health and disease. Previous 
studies in DLB patients have reported changes in functional 
connectivity in networks associated with motor function, 
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cognitive control, and attention [12–15]. However, whether 
these DLB-related changes occur early in the course of the 
disease remains an unanswered question. The first aim of 
this study was therefore to investigate changes in intra- and 
inter-network functional connectivity in MCI-LB patients 
compared to healthy controls and patients with MCI due to 
Alzheimer’s disease (MCI-AD).

More recently it has become evident that the assump-
tion of temporal stationarity that underlies these traditional 
analyses of functional connectivity stands in contrast to the 
fact that connectivity can vary in both strength and direc-
tionality on a timescale of seconds to minutes [16, 17]. The 
focus has therefore shifted towards the analysis of dynamic 
or time-varying functional connectivity which aims to 
describe how connectivity changes over the duration of a 
scan [18, 19]. In a previous dynamic connectivity study we 
have reported that compared to controls, DLB patients spent 
more time in a state of low inter-network connectivity and 
showed difficulties in switching into more highly and spe-
cifically connected network configurations over time [20]. 
Furthermore, a relative reduction in the temporal variability 
of global network efficiency was observed in DLB patients 
indicating the presence of an abnormally rigid brain network 
[20, 21]. These results are remarkably similar to those that 
have been reported in Parkinson’s disease dementia (PDD) 
[22, 23] which shows large symptomatic and pathological 
overlap with DLB [24–26]. In the context of PDD, these 
changes are already evident at the MCI stage suggesting that 
they occur early in the course of the disease [22]. Therefore 
the second aim of this study was to test whether connectivity 
dynamics are also affected early in the context of DLB by 
investigating changes in time-varying functional connectiv-
ity in MCI-LB patients.

Methods

Participants

Recruitment and clinical assessment of participants for this 
study have been described previously [27]. Briefly, patients 
were recruited from local memory services and MCI was 
diagnosed by a consensus panel of three experienced old-
age psychiatrists according to NIA-AA criteria [28]. Fol-
lowing a detailed clinical assessment, patients with a diag-
nosis of dementia or subjective cognitive impairment were 
excluded and all included patients had a CDR of 0 or 0.5. 
The panel rated the presence or absence of the core Lewy 
body symptoms (visual hallucinations, cognitive fluctua-
tions, Parkinsonism, and REM sleep behaviour disorder) 
[2]. Additionally, participants had undergone dopaminergic 
imaging with 123I-N-fluoropropyl-2β-carbomethoxy-3β-(4-
iodophenyl) single-photon emission computed tomography 

(FP-CIT SPECT) and 123iodine-metaiodobenzylguanidine 
(MIBG) myocardial scintigraphy.

A diagnosis of MCI due to Alzheimer’s disease (MCI-
AD) was given to patients who had no core Lewy body 
symptoms, negative FP-CIT and MIBG findings, and evi-
dence of cognitive decline that was characteristic of AD, 
i.e. they met the additional NIA-AA criterion for “aetiology 
of MCI consistent with AD pathophysiologic process” [28]. 
Probable MCI with Lewy bodies (MCI-LB) was diagnosed 
if a patient had two or more core Lewy body symptoms or 
one core symptom in addition to a positive FP-CIT and/or 
MIBG scan [4].

Of those participants who had undergone MR imaging, 
38 participants were diagnosed with probable MCI-LB and 
36 were diagnosed with MCI-AD. Healthy controls (N = 31) 
were recruited from friends and relatives of the patients and 
from a local research register and had no history of psychi-
atric or neurological illness and no evidence of cognitive 
decline.

Written informed consent was obtained from all partici-
pants prior to study participation and the study was approved 
by the local ethics committee.

Data acquisition

MR imaging was performed on a 3 T Philips Intera Achieva 
scanner with an eight channel head coil receiver. Structural 
images were acquired with a magnetization prepared rapid 
gradient echo (MPRAGE) sequence, sagittal acquisition, 
echo time = 4.6 ms, repetition time (TR) = 8.3 ms, inver-
sion time = 1250 ms, flip angle = 8°, SENSE factor = 2, in-
plane resolution = 1.0 × 1.0  mm2, slice thickness = 1.0 mm. 
Resting-state scans were obtained with a gradient echo 
echo-planar imaging sequence with 33 contiguous axial 
slices, 290 volumes, anterior–posterior acquisition, in-
plane resolution = 3.0 × 3.0 mm, slice thickness = 3.0 mm 
(1.0  mm gap), TR = 2072  ms, echo time = 30  ms, and 
field of view = 192 × 192  mm2. A fluid attenuated inver-
sion recovery (FLAIR) sequence was acquired with rep-
etition time = 11,000 ms, inversion time = 2800 ms, echo 
time = 25 ms voxel size = 0.94 × 0.94 mm, and 50 slices with 
thickness = 3.0 mm. Patients who were taking dopaminergic 
medication were scanned in the motor ON state.

Preprocessing

Preprocessing of MRI data was performed using fMRIPrep 
version 20.0.6 [29].

The T1-weighted images were corrected for intensity 
non-uniformity and brain-extracted using the ANTs tool-
box [30, 31]. Brain tissue segmentation into cerebrospinal 
fluid (CSF), grey matter (GM), and white matter (WM) was 
performed on the brain-extracted structural images using 
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FAST in FSL (version 5.0.9) [32]. Volume-based spatial 
normalisation to standard space (MNI152NLin6Asym) was 
performed through non-linear registration with ANTs (ver-
sion 2.2.0).

For each participant, a reference resting-state fMRI vol-
ume and its skull-stripped version were generated using a 
custom methodology of fMRIPrep. The reference image 
was then coregistered to the structural image using FSL’s 
FLIRT with boundary-based registration [33]. Head motion 
parameters with respect to the reference volume (transfor-
mation matrices and six corresponding rotation and transla-
tion parameters) were estimated before any spatiotemporal 
filtering using FSL’s MCFLIRT [33]. The resting-state fMRI 
images were then normalised to MNI space combining all 
spatial transformations (head motion correction, co-registra-
tion to structural images, and normalisation to MNI space) 
into a single step using Lanczos interpolation in ANTs. 
To estimate the extent of motion present in the fMRI data, 
framewise displacement (FD) was calculated [34] and par-
ticipants with a mean FD above 0.5 mm were excluded from 
further analysis.

To further reduce the influence of motion, ICA-AROMA 
[35] was applied to the preprocessed fMRI data in MNI 
space after spatial smoothing with an isotropic 6 mm full-
width at half maximum (FWHM) Gaussian kernel. Addi-
tionally, mean WM and CSF signals were estimated from 
the corresponding masks. These WM and CSF signals were 
then regressed out of the data together with a set of discrete 
cosine regressors to perform simultaneous band-pass filter-
ing between 0.01 and 0.1 Hz. To avoid introducing previ-
ously removed noise signals back into the data, the whole 
regressor matrix was denoised with respect to the identified 
ICA-AROMA noise components using fsl_regfilt prior to 
nuisance regression [36]. Finally, grand-mean scaling was 
applied to the denoised resting-state fMRI data and data 
were resampled to a resolution of 4  mm3 using ANTs.

The brain masks estimated by fMRIPrep were combined 
across all participants to create a group brain mask by only 
including voxels that were non-zero in all subject-specific 
masks.

Areas of white matter hyperintensity (WMH) were iden-
tified from FLAIR images using in-house developed code 
in SPM [37] and total WMH volumes were estimated as a 
measure of vascular load.

Analysis of static functional connectivity

We used RSN templates from the UK Biobank study which 
were estimated by combining resting-state fMRI data from 
over 4000 UK Biobank participants and applying group 
independent component analysis (ICA) [38]. Group ICA 
decomposes the data into a specified number of networks 
and was run at two different dimensionalities (d = 25 and 

d = 100, referring to the number of distinct ICA compo-
nents). Components that were classified as being of non-
neuronal origin (e.g. due to head motion) were excluded 
from the analysis (four noise components for d = 25 and 45 
noise components for d = 100). Furthermore, in the high-
dimensional case four additional components were excluded 
because they were located mainly outside of the estimated 
group mask. Thus, the low-dimensional case included 21 
RSNs (see Fig. 1) and the high-dimensional case included 
51 RSNs (see Supplementary Figure S1) for further analysis.

Subsequently, subject-specific representations of the 21 
(51) RSNs were estimated using group-information guided 
ICA (gig-ICA) [39] which results in subject-specific spatial 
maps and associated subject-specific time courses for each 
RSN.

Group differences in functional connectivity between 
controls, MCI-AD, and MCI-LB were assessed using Per-
mutation Analysis of Linear Models (PALM) [40] with tail 
approximation [41] and the number of permutations set to 
500. Threshold-free cluster enhancement (TFCE) was used 
for voxel-wise multiple comparison correction and p-values 
were also family-wise error corrected across the number of 
included RSNs (21 and 51, respectively) and the six group 
comparisons (two-sided tests for controls vs MCI-AD, con-
trols vs MCI-LB, and MCI-AD vs MCI-LB) [42]. Covariates 
of no interest for age and sex were included in the model as 
well as a voxel-wise covariate for grey matter density [43].

The FSLnets package was used to assess between-network 
connectivity. Full and partial correlations were calculated 
between all pairs of RSNs and the correlation coefficients 
were converted to z-scores. PALM was used to assess group 
differences including covariates for age and sex. Results 
were FWE-corrected for multiple comparisons (across full 
and partial correlations, the number of RSN pairs, and the 
six different contrasts).

Dynamic sliding‑window analysis

Dynamic functional connectivity was assessed using a 
sliding-window analysis (see below, Allen et al., 2014). To 
remove potentially remaining noise sources, the subject-
specific time courses resulting from gig-ICA were further 
processed in Matlab using functions from the Group ICA 
of fMRI toolbox (GIFT, http:// mialab. mrn. org/ softw are/ 
gift/ index. html). This postprocessing included detrending 
to remove linear, quadratic, and cubic trends, outlier detec-
tion using AFNI’s 3dDespike function, and interpolation of 
outliers using a third-order spline fit to the clean parts of 
the signal.

A tapered sliding window was created by convolving a 
rectangular window with a size of 22 TR (~ 44 s) with a 
Gaussian with sigma of 3 TR which was moved in steps of 1 
TR. This resulted in a total of 269 overlapping windows. To 

http://mialab.mrn.org/software/gift/index.html
http://mialab.mrn.org/software/gift/index.html
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assess the influence of the choice of window length on the 
results, the analysis was repeated using windows of length 
18, 20, 24, and 26 TR.

A covariance matrix between all RSN pairs was estimated 
following the approach from [44]. Since estimation of covar-
iance based on short time series can be noisy, the regularised 
inverse covariance matrix was estimated using the graphi-
cal LASSO approach. An L1-norm constraint was imposed 
on the inverse covariance matrix to achieve regularisation 
and promote sparsity. The L1 regularisation parameter λ was 
optimized for each participant individually by evaluating 
the log-likelihood of unseen time windows from the same 
participant using 20-fold cross-validation. All covariances 
were then converted to correlation values and transformed 
into z-scores using Fisher r-to-z transformation. To control 
for the effect of possible covariates the z-scores were then 

residualised with respect to age and sex using multiple linear 
regression [45].

The variability of functional connectivity over time was 
assessed by calculating the standard deviation of the correla-
tion matrices across time windows. To assess whole-brain 
dynamics, the mean standard deviation across all RSN con-
nections was calculated. Furthermore, the mean standard 
deviation for each network and for each connection were 
assessed separately.

To assess patterns of functional connectivity that reoccur 
over time, a k-means clustering analysis was applied to the 
windowed correlation matrices from all participants using 
the Manhattan distance function in Matlab. The clustering 
was repeated 500 times with random initialisation of cluster 
centroids to get a more stable solution. The optimal number 
of clusters k was determined based on the elbow criterion of 

Fig. 1  Included resting-state networks from the UK Biobank group-ICA (d = 21) overlaid on the MNI brain template. Spatial maps are thresh-
olded at 5 < z < 15. Images are shown in radiological convention, i.e. the right side of the image corresponds to the left hemisphere
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the cluster validity index, i.e. the sum of within-cluster dis-
tances divided by the sum of between-cluster distances [44].

Group differences were assessed with respect to (1) fre-
quency: proportion of windows assigned to each state, (2) 
mean dwell time: time spent in a state before transitioning to 
a different state, (3) number of transitions: overall number of 
state transitions, and (4) mean intertransition time: average 
time between two state transitions.

Leading eigenvector dynamic analysis

In addition to the sliding-window analysis, we also tested an 
approach for the estimation of dynamic functional connec-
tivity that does not rely on a sliding window, Leading Eigen-
vector Dynamic Analysis (LEiDA) [46]. The advantage of 
this approach is that it allows to estimate similarity between 
the time series of different brain regions instantaneously 
using the phase of signals (using the Hilbert transform).

For this analysis, 90 regions from the Automatic Ana-
tomical Labelling (AAL) atlas were used [47]. These were 
then masked with the estimated group mask and atlas 
regions with less than 50% overlap with the group mask 
were excluded [48]. This led to the exclusion of 12 regions, 
thus including N = 78 regions from the AAL atlas for further 
analysis (see Supplementary Table S1).

Mean BOLD time series were extracted for each par-
ticipant and each atlas region. To obtain a time-resolved 
connectivity matrix between all pairs of brain regions, the 
phase of the BOLD time series of each region was estimated 
using the Hilbert transform. The phase coherence between 
regions n and p at time t was then assessed using the follow-
ing formula

where �(n,t) is the phase of the BOLD signal in region n 
at time t. If two regions have temporarily aligned BOLD 
signals, i.e. they have similar phases, dFC will be close to 1. 
In contrast, if BOLD signals from two areas are orthogonal 
to each other, dFC will be close to 0. This results in a sym-
metric and square matrix for each timepoint with the number 
of rows and columns equal to the number of brain regions N 
in which the entry dFC(n,p,t) reflects the similarity between 
the BOLD signals of regions n and p at time t.

To study the evolution of dFC over time, the most com-
mon approach is to compare the N × N dFC(t) matrices 
obtained at each time point (see “Dynamic sliding-window 
analysis”). However, instead of considering all N × (N − 1)/2 
distinct values of dFC, Cabral et al. [46] have shown that the 
leading eigenvector V1(t) at each time point can be used to 
capture the dominant connectivity pattern of dFC at time t. 
We therefore calculated a time-by-time matrix representing 
functional connectivity dynamics (FCD) where each entry 

dFC(n, p, t) = cos(�(n, t) − �(p, t)),

FCD(t1,t2) corresponds to the cosine similarity between the 
leading eigenvectors of dFC at time t1 and t2, ranging from 
− 1 to 1.

To assess functional connectivity patterns that reoccur 
over time, a k-means clustering analysis was applied to the 
leading eigenvectors across all time points and participants 
using the Manhattan distance function in Matlab. Again, 
the clustering was repeated 500 times with random ini-
tialisation of cluster centroids and the optimal number of 
clusters k was determined using the elbow criterion. Group 
differences were assessed using the same metrics as for the 
sliding-window k-means analysis described in “Dynamic 
sliding-window analysis”.

Statistical analysis

Statistical analyses were performed in SPSS and R (https:// 
www.R- proje ct. org/).

For the sliding-window analysis, the variability of func-
tional connectivity of each RSN and each connection was 
compared between the groups using non-parametric multi-
variate ANOVAs (MANOVA, [49]) with diagnosis as the 
between-subject factor. For the LEiDA analysis, the mean 
similarity between time windows (from the FCD matrix) was 
compared between groups using a Kruskal–Wallis ANOVA.

The k-means measures from the sliding window and the 
LEiDA analysis (frequency and mean dwell time per state) 
were compared between the groups using non-parametric 
ANOVAs. The number of transitions and mean intertransi-
tion time were compared between the groups using univari-
ate Kruskal–Wallis ANOVAs.

The effect of cholinesterase inhibitor use on dynamic 
connectivity measures in the MCI-LB patients was tested 
by comparing all dynamic connectivity measures between 
MCI-LB patients who were taking cholinesterase inhibitors 
(N = 14) to those MCI-LB patients not taking this medica-
tion (N = 16) using Mann–Whitney U tests. Furthermore, 
we repeated the analysis after excluding patients who were 
taking cholinesterase inhibitors, thus including 16 MCI-LB, 
21 MCI-AD, and 24 healthy control participants.

As a supplementary analysis to assess whether vascular 
load might influence the functional connectivity results, we 
tested the inclusion of a covariate for WMH volume in the 
analyses. This did not change any of the results.

Results

Exclusion of participants

Two MCI-AD and one control participant were excluded 
due to restricted fields of view of the resting-state fMRI 
data. Additionally, six controls, five MCI-ADs, and seven 

https://www.R-project.org/
https://www.R-project.org/
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MCI-LBs had to be excluded because of excessive motion. 
This resulted in 31 patients with MCI-LB, 28 patients with 
MCI-AD, and 24 controls for further analysis.

Demographics

All three groups were similar in age and the two MCI groups 
were similar in terms of their overall cognitive impairment 
as measured by MMSE and ACE-R scores (see Table 1). 
The MCI-LB group included more male participants than 
the MCI-AD and the healthy control groups. The MCI-LB 
group had higher cognitive fluctuation and visual halluci-
nation scores and more MCI-LB patients were taking cho-
linesterase inhibitors compared to the MCI-AD group. No 
participants were taking antipsychotic drugs. Seven MCI-
AD, 12 MCI-LB, and two control participants were taking 
anti-depressants. Additionally, one MCI-AD, eight MCI-LB, 
and two control participants were taking hypnotic/anxiolytic 
medication.

There was no difference in mean or maximum FD 
between the three groups (see Table 1). There was no differ-
ence in total WMH volume (normalised with respect to total 
brain volume) between the groups (F(2,80) = 1.8, p = 0.17).

Static functional connectivity

PALM did not identify any significant differences in the 
group comparison of within- and between-network con-
nectivity for any RSN, for the low- (d = 21) and the high-
dimensional (d = 51) Biobank RSNs.

Dynamic sliding‑window analysis

Figure 2a–c shows matrices representing the mean standard 
deviation of the strengths of each RSN-to-RSN connection 
within each group. The mean variability of RSN connectiv-
ity, across all connections, was not significantly different 
between groups (H2 = 0.55, p = 0.76, Fig. 2d). When consid-
ering average variability for each RSN separately, the overall 
MANOVA did not show a significant effect of diagnosis 
(F(4,155) = 0.61, p = 0.65). Similarly, when considering 
each individual RSN-to-RSN connection, the MANOVA 
did not reveal a significant group effect (F(32,1267) = 0.93, 
p = 0.57). These results were consistent across different win-
dow sizes (Supplementary Figure S2 and Supplementary 
Table S2) and when using the higher-dimensional (d = 51) 

Table 1  Demographic and 
clinical variables, mean 
(standard deviation)

ACE-R Addenbrooke’s Cognitive Examination—Revised, AChEI number of patients taking acetylcho-
linesterase inhibitors, CAF total Clinician Assessment of Fluctuation total score, DCFS Dementia cogni-
tive fluctuation scale, FD framewise displacement, HC healthy controls, MCI-AD mild cognitive impair-
ment with Alzheimer’s disease, MCI-LB probable mild cognitive impairment with Lewy bodies, MMSE 
Mini Mental State Examination, NEVHI North-East Visual Hallucinations Interview, NPI Neuropsychiatric 
Inventory, PD meds number of patients taking dopaminergic medication for the management of Parkin-
son’s disease symptoms, UPDRS III Unified Parkinson’s Disease Rating Scale III (motor subsection)
a Chi-square test HC, MCI-AD, MCI-LB; bUnivariate ANOVA HC, MCI-AD, MCI-LB; cChi-square test 
MCI-AD, MCI-LB; dStudent’s t test MCI-AD, MCI-LB, eN = 26, fN = 30, gN = 22, hN = 23, iN = 28, jN = 27

HC (N = 24) MCI-AD (N = 28) MCI-LB (N = 31) Group differences

Male:female 17:7 14:14 29:2 χ2 = 14.0, p = 0.001a

p(HC,MCI-AD) = 0.13
p(HC,MCI-LB) = 0.02
p(MCI-AD,MCI-LB) < 0.001

Age 73.5 (7.6) 76.2 (7.9) 74.7 (6.6) F(2,80) = 0.9, p = 0.41b

AChEI – 5 (19%)e 14 (47%)f χ2 = 5.1, p = 0.08c

PD meds – 0e 2 (7%)f χ2 = 2.2, p = 0.32c

Years of education 14.5 (3.7)g 12.9 (3.5) 12.1 (3.0) F(2,77) = 3.4, p = 0.04b

p(HC,MCI-AD) = 0.32
p(HC,MCI-LB) = 0.03
p(MCI-AD,MCI-LB) = 1.0

ACE-R 92.3 (4.4) 82.2 (8.8) 83.4 (9.5) t57 = 0.5, p = 0.62d

MMSE 28.3 (1.1) 27.0 (2.2) 26.6 (2.6) t57 = 0.6, p = 0.61d

UPDRS III 5.3 (4.3) 16.2 (15.1) 22.8 (14.9) t57 = 1.7, p = 0.1d

DCFS – 6.7 (1.9)h 8.8 (3.5)i t49 = 2.6, p = 0.01d

CAF total – 1.3 (2.4)h 4.2 (4.5)i t49 = 2.8, p = 0.008d

NPI total – 7.6 (8.3)h 14.9 (12.6)i t49 = 2.4, p = 0.02d

NEVHI – 0.6 (1.2)j 3.3 (4.4) t56 = 3.1, p = 0.003d

Mean FD (mm) 0.25 (0.09) 0.28 (0.10) 0.26 (0.11) F(2,80) = 0.6, p = 0.59b

Max FD (mm) 0.94 (0.66) 1.3 (0.65) 1.1 (0.73) F(2,80) = 1.7, p = 0.19b
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group-ICA components (Supplementary Figure S3 and Sup-
plementary Table S4).

An optimal number of k = 3 clusters was determined 
for the clustering analysis using the elbow criterion (Sup-
plementary Figure S4). State 1 was characterised by over-
all sparse connectivity with slightly stronger connectivity 
between different parts of the default mode network and 
between the different visual networks (Fig. 3a–d). In con-
trast, state 2 was characterised by stronger overall connec-
tivity, especially within default mode and visual networks, 
and strong negative connectivity between the default mode 
and motor and basal ganglia networks. State 3 showed 

particularly strong connectivity within visual networks and 
strong negative connectivity between the visual and the other 
networks. State 1 was the most common state, accounting 
for 49% of all time windows across all participants, whereas 
32% of time windows were assigned to state 2 and partici-
pants spent 19% of their time in state 3.

There were no group differences between controls, MCI-
AD, and MCI-LB in terms of the number of state transi-
tions (H2 = 0.99, p = 0.61, Fig. 3e), the mean intertransition 
time (H2 = 0.86, p = 0.65, Fig. 3g), the frequency of the three 
states (F(4,170) = 0.21, p = 0.94, Fig. 3f) or mean dwell time 
per state (F(4,174) = 0.17, p = 0.96, Fig. 3h). These results 
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Fig. 2  Results from sliding-window dynamic functional connectiv-
ity analysis. a–c Matrices represent mean standard deviation over 
time for the HC, MCI-AD, and MCI-LB groups. d Boxplot of group 
comparison of mean standard deviation across all connections. In the 
boxplot the central line corresponds to the sample median, the upper 

and lower border of the box represent the 25th and 75th percentile, 
respectively, and the length of the whiskers is 1.5 times the interquar-
tile range. DMN default mode network, HC healthy controls, MCI-AD 
mild cognitive impairment with Alzheimer’s disease, MCI-LB mild 
cognitive impairment with Lewy bodies
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remained consistent when varying the number of clusters k 
from 2 to 6 (Supplementary Figure S5 and Supplementary 
Table S6), when repeating the analysis with different win-
dow sizes (Supplementary Figure S6 and Supplementary 
Table S6), and when using the higher-dimensional group-
ICA components (Supplementary Figures S7-S9 and Sup-
plementary Table S8).

Leading eigenvector dynamic analysis

An optimal number of k = 3 clusters was determined for 
the LEiDA clustering analysis (Supplementary Figure S4). 
The overall similarity between time windows did not differ 
between groups (H2 = 3.4, p = 0.18).

Figure 4a shows the cluster centroids for the three states. 
Each cluster centroid is a vector V and the outer product 
 VVT represents a N x N connectivity pattern which indicates 
the contribution of each brain area to that pattern. State 1 
was the most common state accounting for 47% of all time 
points across participants. It corresponds to a state of global 
BOLD coherence, i.e. the BOLD signals of all brain areas 
exhibit a strong coherence (Fig. 4). State 2, which accounted 
for 28% of time points, shows strong coherence only between 
different occipital regions (across both hemispheres). State 
3 was present in 25% of time points and exhibited overall 
strong coherence between brain regions, except for occipital 
areas that appear to be decoupled from other brain regions.

There were no group differences between controls, MCI-
AD, and MCI-LB in terms of the number of state transi-
tions (H2 = 5.6, p = 0.06, Fig. 4b), the mean intertransition 
time (H2 = 4.4, p = 0.11, Fig. 4c), the frequency of the three 
states (F(4,146) = 0.8, p = 0.51, Fig. 4b) or mean dwell time 
per state (F(6,217) = 1.1, p = 0.34, Fig. 4d). When repeat-
ing the analysis with k = 2, a significant difference in the 
number of state transitions (H2 = 9.3, p = 0.01) and the mean 
intertransition time (H2 = 9.2, p = 0.01) was found. Post-hoc 
tests revealed that the number of state transitions was signifi-
cantly higher and the mean intertransition time significantly 

lower in MCI-LB compared to MCI-AD (Supplementary 
Table S10). However, these results were not reproducible 
for higher values of k.

Effect of cholinesterase inhibitor use

None of the dynamic connectivity measures (from slid-
ing window and LEiDA analyses) showed any differences 
between MCI-LB patients who were taking cholinesterase 
inhibitors and those MCI-LB patients not taking this medi-
cation (all p > 0.1). Repeating the analysis after excluding 
patients who were taking cholinesterase inhibitors did not 
change any of the results (see Supplementary Tables S3, S5, 
S7, S9, and S11).

Discussion

In this work we investigated resting-state functional con-
nectivity in patients with MCI-LB compared to healthy con-
trols and MCI-AD patients from different perspectives. We 
did not find any significant changes in the MCI-LB group 
compared to controls and no differences between the two 
MCI groups, using both static as well as dynamic connec-
tivity measures. To ensure that results were not biased by 
choosing a specific dimensionality for the RSN estimation 
or by the particular method used for dynamic analysis, we 
repeated the analysis using low- and high-dimensional RSN 
templates and two different strategies to assess connectiv-
ity dynamics. Additionally, whenever an analysis involved 
assigning a specific value to a parameter (i.e. window size, 
number of clusters) we repeated the analyses using a range 
of parameter values.

In the dynamic k-means analysis, we found recurring 
connectivity patterns that are comparable to previous stud-
ies, i.e. one state of overall low inter-network connectiv-
ity that accounts for a majority of the time windows and 
one or more states that are characterised by a stronger and 
more specific connectivity profile and account for a smaller 
number of time windows [20, 22, 50–52]. Previous stud-
ies at the dementia stage in both DLB and PDD patients 
have shown that patients tend to spend more time in a state 
of low overall connectivity and show difficulties to switch 
into states of higher connectivity [20, 22]. Importantly, it 
has been shown that in the context of Parkinson’s disease 
these changes occur early and can already be observed in 
PD-MCI patients [22, 51]. In contrast, we did not observe 
early changes in the frequency or mean dwell time of con-
nectivity states in our MCI-LB group. It is possible that this 
difference is influenced by the fact that PD-MCI patients 
already have a longer disease duration compared to MCI-LB 
patients with comparable levels of cognitive impairment. 
One could also argue that PD-MCI may represent a more 

Fig. 3  Results from the sliding-window k-means analysis with low-
dimensional Biobank RSNs (d = 21). a Centroids resulting from 
clustering on all windows and participants. The network graphs are 
showing only the 5% strongest positive (red) and negative (blue) con-
nections. b Cluster medians in the healthy control group. c Cluster 
medians in the MCI-AD group. d Cluster medians in the MCI-LB 
group. e Group comparison of the overall number of state transi-
tions. f Group comparison of frequency of occurrence of the three 
states. g Group comparison of mean time between two state transi-
tions. h Comparison of mean dwell time of the three states. In the 
boxplots the central line corresponds to the sample median, the upper 
and lower border of the box represent the 25th and 75th percentile, 
respectively, and the length of the whiskers is 1.5 times the interquar-
tile range. HC healthy controls, MCI-AD mild cognitive impairment 
with Alzheimer’s disease, MCI-LB mild cognitive impairment with 
Lewy bodies

◂
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pure alpha-synucleinopathy whereas in MCI-LB there may 
be more Alzheimer’s disease co-pathology which could 
influence the phenotype [53, 54].

Sliding-window methods have been criticised for requir-
ing the choice of a window size which affects their tempo-
ral resolution and statistical validity [55, 56]. The second 
dynamic connectivity method that we applied, LEiDA, 
overcomes this issue using the phase of the signal to obtain 
instantaneous measures of dynamic connectivity [46]. 
Again, we found states that are comparable to previous stud-
ies: The most prevalent state was a state of global BOLD 
coherence whereas the other less frequently occurring states 
were characterised by more specific coherence patterns 
[46]. However, similar to the sliding-window analysis, this 
method did not detect any significant changes in the MCI-LB 
group compared to healthy controls or MCI-AD patients.

In previous studies of the same patient cohort we have 
found changes in MCI-LB patients compared to controls and 
MCI-AD patients not only with respect to their cognitive 
profile [57, 58], but also in terms of resting-state EEG meas-
ures [27] as well as structural changes within the nucleus 
basalis of Meynert [59]. This indicates that changes in brain 
function are already evident in these patients despite their 
early stage of disease. The lack of differences found in the 
present study therefore suggests that the fMRI analyses con-
ducted here might not be sensitive enough to discern early 
and subtle changes in MCI-LB patients. From the absence 
of significant findings, however, we cannot simply con-
clude that there are no differences in functional connectiv-
ity between the groups as the absence of evidence does not 
automatically provide evidence for the absence of an effect. 
A particular challenge with studying MCI groups is their 
large heterogeneity which influences our ability to detect 
differences at the group level. There might be subtle changes 
in functional connectivity in MCI-LB patients that will only 
become detectable later on in the course of the disease. 
These analyses should therefore be repeated in independent 
cohorts, ideally taking advantage of longitudinal fMRI data 
to study changes that occur over the disease course.

This work has some limitations. First, some of our MCI 
patients were taking cholinesterase inhibitors and dopamin-
ergic medication which might have normalised their fMRI 

characteristics [60–62]. However, when comparing those 
MCI-LB patients who were taking cholinesterase inhibitors 
to those who were not, we did not find any significant dif-
ferences for any of the dynamic connectivity measures. Fur-
thermore, restricting the analysis to those participants who 
were not taking cholinesterase inhibitors did not change the 
findings. The prescription rates for cholinesterase inhibitors 
in this cohort reflect local use for treatment of neuropsychi-
atric symptoms in Lewy body disease and are in line with 
recent guidelines [63]. Only two of the MCI-LB patients 
were taking dopaminergic medication which precludes 
any further analysis of its effect on functional connectivity 
metrics. Another potential limitation is the sex imbalance 
between the three groups which reflects differences in preva-
lence of AD and DLB in men and women [64, 65]. We have 
included a covariate for sex in all analyses; however, this 
imbalance still remains as a limitation of this work.

Conclusion

In summary, we did not find any evidence for significant 
early changes in static or dynamic functional connectivity in 
MCI-LB patients compared to controls and MCI-AD. While 
MCI-LB patients already show clear functional abnormali-
ties on EEG measures, the fMRI analyses presented here do 
not appear to be sensitive enough to detect such early differ-
ences in brain function between the groups.
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