77 research outputs found

    Overexpression of Bcl-2 is associated with apoptotic resistance to the G-quadruplex ligand 12459 but is not sufficient to confer resistance to long-term senescence

    Get PDF
    The triazine derivative 12459 is a potent G-quadruplex interacting agent that inhibits telomerase activity. This agent induces time- and dose-dependent telomere shortening, senescence-like growth arrest and apoptosis in the human A549 tumour cell line. We show here that 12459 induces a delayed apoptosis that activates the mitochondrial pathway. A549 cell lines selected for resistance to 12459 and previously characterized for an altered hTERT expression also showed Bcl-2 overexpression. Transfection of Bcl-2 into A549 cells induced a resistance to the short-term apoptotic effect triggered by 12459, suggesting that Bcl-2 is an important determinant for the activity of 12459. In sharp contrast, the Bcl-2 overexpression was not sufficient to confer resistance to the senescence-like growth arrest induced by prolonged treatment with 12459. We also show that 12459 provokes a rapid degradation of the telomeric G-overhang in conditions that paralleled the apoptosis induction. In contrast, the G-overhang degradation was not observed when apoptosis was induced by camptothecin. Bcl-2 overexpression did not modify the G-overhang degradation, suggesting that this event is an early process uncoupled from the final apoptotic pathway

    Click synthesis, anticancer activity, and molecular docking investigation of some functional 1,2,3-triazole derivatives

    Get PDF
    1,2,3-triazole skeleton is a privileged building block for the discovery of new promising anticancer agents. In this report, new 1,4-disubstituted 1,2,3-triazoles with the bioisoster triazole moiety were straightforwardly prepared under copper-catalyzed azide-alkyne [3+2] cycloaddition reactions (CuAAC) regime using a variety of both functional organic azides and terminal alkynes. The resulting functional 1,4-disubstituted 1,2,3-triazole compounds were fully characterized and subsequently tested for their antiproliferative activity against four different cancer cell lines. The cytotoxicity tests carried out with these 1,2,3-triazole derivatives show average IC50 values ranging from 15 to 50 ÎŒM by comparison with the standard reference drug, namely doxorubicin. The phosphonate 1,2,3-triazole derivative was found to exhibit the best antiproliferative activity among the studied compounds against the HT-1080 cell lines. It was chosen to evaluate its mode of action in these cancer cell lines. The cell cycle study showed that the phosphonate derivative, compound 8, is the most active inhibitor of the cell cycle at the G0/G1 phase, inducing apoptosis independently of Caspase-3 and causing an increase in the mitochondrial membrane potential (Διm) in the HT-1080 cell lines. Molecular docking studies of this phosphonate derivative into the MMP-2 and MMP-9 metalloproteinases receptors demonstrated the relevance of triazole scaffolds and the pendant phosphonate group in establishing -anion, -alkyl and hydrogen bonding type interactions with residual components in the active MMP pocket

    DDR1 and MT1-MMP Expression Levels Are Determinant for Triggering BIK-Mediated Apoptosis by 3D Type I Collagen Matrix in Invasive Basal-Like Breast Carcinoma Cells

    Get PDF
    Type I collagen is the major adhesive component in breast interstitial stroma, which represents the first barrier against tumor cell invasion after basement-membrane degradation. Among cellular receptors, type I collagen is able to activate discoidin domain receptors DDR1 and DDR2. We have previously shown that in 3D collagen matrix, DDR1 plays a key role as it promotes cell growth suppression and apoptosis through the upregulation of the pro-apoptotic mediator BIK in noninvasive luminal-like breast carcinoma cells. We have also shown that MT1-MMP is able to rescue these cells and protect them against the effects induced by collagen/DDR1/BIK axis. Our data suggested that the protective effect of MT1-MMP might be mediated through the degradation of type I collagen and/or DDR1 cleavage. Decreased DDR1 expression has been associated with the epithelial to mesenchymal transition process in breast cancer, and its overexpression in aggressive basal-like breast cancer cells reduces their invasiveness in 3D cultures and in vivo. In the present work, we propose to study the role of MT1-MMP in the resistance against collagen-induced apoptosis in basal-like breast carcinoma MDA-MB-231 cells. We aimed to investigate whether MT1-MMP depletion is able to restore apoptosis mediated by collagen/DDR1/BIK axis and to verify if such depletion is able to restore full-length DDR1 expression and phosphorylation. ShRNA strategy against MT1-MMP mRNA was able to partially restore full length DDR1 expression and phosphorylation. This was accompanied by a decrease in cell growth and an upregulation of BIK expression. This suggested that MT1-MMP expression in basal-like breast carcinoma cells, in addition to a low basal level of DDR1 expression, protects these cells against collagen-induced apoptosis via DDR1 cleavage. Since DDR1 was moderately expressed in MDA-MB-231 cells, we then investigated whether overexpression of DDR1 could be able to increase its ability to suppress cell growth and to induce apoptosis. Data showed that overexpression of DDR1 induced a decrease in cell growth and an increase in BIK expression, suggesting that moderate expression level of full length DDR1 in basal-like breast carcinoma provides them with a capacity to resist to collagen-induced cell growth suppression and apoptosis. Finally, the combined overexpression of DDR1 and depletion of MT1-MMP in MDA-MB-231 cells synergistically increased collagen-induced cell growth suppression and apoptosis to a level similar to that observed in luminal breast carcinoma. Taken together, our data suggest that during the acquisition of mesenchymal features, the low level of DDR1 expression should be considered as an important biomarker in the prognosis of basal-like breast carcinoma, conferring them a high rate of cell growth and resistance to BIK-mediated apoptosis induced by the stromal collagen

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Environnement tumoral et réponse à la chimiothérapie

    No full text
    REIMS-BU Santé (514542104) / SudocSudocFranceF
    • 

    corecore