7 research outputs found

    On the influence of particle concentration in a lubricant and its rheological properties on the bearing behavior

    No full text
    Vibration and wear debris analyses are the two main conditions monitoring techniques for machinery maintenance and fault diagnosis. In addition, numerical simulation can provide useful tools to assess the proper functioning of industrial machines. We use different suspension theories with a concern of the effect of solid particles liquid lubricant itself on bearing behavior. We consider both simple models based on the Einstein’s mixture theory and a micropolar fluid theory, which is characterized by the presence of suspended rigid micro-structured particles. We suppose in this study that there are no abrasion and no wear (which are not beneficial for the contact performances) due to the presence of particles. Thus in this case we found theoretically that the presence of rigid particles in the lubricant increases the effective viscosity which enhances the load-carrying capacity as well as the minimum film thickness

    Non-Newtonian couple-stress squeeze film behaviour between oscillating anisotropic porous circular discs with sealed boundary

    No full text
    The thrust of this paper is to investigate theoretically the non-Newtonian couple stress squeeze film behaviour between oscillating circular discs based on V. K. Stokes micro-continuum theory. The lubricant squeezed out between parallel porous and rigid facings is supposed to be a concentrated suspension which consists of small particles dispersed in a Newtonian base fluid (solvent). The effective viscosity of the suspension is determined by using the Krieger-Dougherty viscosity model for a given volume fraction of particles in the base fluid. For low frequency and amplitude of sinusoidal squeezing where cavitation as well as turbulence are unlikely, the governing equations including the modified Reynolds equation coupled with the modified Darcy's equation are derived and solved numerically using the finite difference method and a sub-relaxed iterative procedure. The slip velocity at the porous-fluid interface is directly evaluated by means of the modified Darcy's law considering laminar and isothermal squeezing flow. For a given volume fraction, the couple stress effects on the squeeze film characteristics are analyzed through the dimensionless couple stress parameter â„“Ëś â„“ Ëś considering sealed and unsealed boundary of the porous disc. The obtained relevant results reveal that the use of couple stress suspending fluids as lubricants and the effect of sealing the boundary of the porous matrix improves substantially the squeeze film behaviour by increasing the squeeze film force. On the other hand, side leakage flow calculated in the sealed case remains constant in comparison to that of open end (unsealed) porous disc for all values of couple stress parameter and volume fraction of particle

    Analysis of couple-stresses and piezo-viscous effects in a layered connecting-rod bearing

    No full text
    International audienceIn this work, the combined effects of couple-stresses and piezo-viscosity on the dynamic behavior of a compression ignition engine big-end connecting-rod bearing with elastic layer are investigated using the V. K. Stokes micro-continuum theory. It is assumed that the journal (crankpin) is rigid and the big-end bearing consists of a thin compressible elastic liner fixed in an infinitely stiff housing. The governing Reynolds' equation and the viscous dissipation term appearing on the RHS of energy equation are modified using the V. K. Stokes micro-continuum theory. The non-Newtonian effect is introduced by a new material constant η, which is responsible for couple-stress property, and the piezo-viscosity effect by the pressure–viscosity coefficient α appearing in the well-known Barus' law. In the proposed model, the nonlinear transient modified Reynolds equation is discretized by the finite difference method, and the resulting system of algebraic equations is solved by means of the subrelaxed successive substitutions method to obtain the fluid-film pressure field as well as the film thickness distribution. The crankpin center trajectories for a given load diagram are determined iteratively by solving the nonlinear equilibrium equations of the journal bearing system with the improved and damped Newton–Raphson method for each time step or crankshaft rotation angle. According to the obtained results, the effects of couple-stresses and piezo-viscosity on the nonlinear dynamic behavior of dynamically loaded bearings with either stiff or compliant liners are significant and cannot be overlooked

    Steady-state behavior of finite compliant journal bearing using a piezoviscous polar fluid as lubricant

    No full text
    The proposed work is concerned with the theoretical and numerical investigation of the lubricant rheology effects on the steady-state behavior of a plain finite compliant journal bearing operating under isothermal conditions. In the present investigation, the couple-stresses due to the presence of improving viscosity index (VI) additives, the viscosity-pressure (piezoviscosity effect) as well as the density-pressure (compressibility effect) variations are considered. The hydrodynamic lubrication theory is based on the V.K. Stokes micro-continuum mechanics which takes into account the size of macro-molecular chains added to the basic oil. The Barus and Dowson-Higginson laws were used to express the viscosity-pressure and density-pressure variations. Using the classical assumptions of lubrication, a modified Reynolds’ equation is derived and solved numerically by the finite difference method. The displacement field at the fluid film bearing liner interface due to pressure forces is determined using the elastic thin liner model. The proposed work is concerned with the theoretical and numerical investigation of the lubricant rheology effects on the steady-state behavior of a plain finite compliant (elastic liner) journal bearing operating under isothermal conditions and laminar flow. The obtained results show that the couple-stresses have significant effects on the hydrodynamic performance characteristics such as the pressure field, the carrying capacity, the attitude angle and friction number especially when the viscosity-pressure variation is considered. Moreover, it is also shown that the compressibility of lubricant doesn’t affect the hydrodynamic characteristics

    Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes

    No full text
    The search for effective and sustainable methods to degrade and remove recalcitrant dyes from textile effluents is a major research endeavor, owing to the escalating environmental and health concerns arising from the discharge of coloured effluents into water bodies. Plant-based peroxidases represent a reliable bio-resource for sustainable treatment of coloured effluents with the capacity to offer a continuous process for high throughput operation. The present study investigates the potential use of soybean peroxidase and Luffa acutangula (luffa) peroxidase, extracted from bio-wastes of soybean hulls and luffa skin peels respectively, for enzymatic degradation of azo dye methyl orange from liquid effluents. The enzymatic dye removal process was studied based on the consistent enzymatic activities of crude soybean peroxidase and luffa peroxidase extracts, which were 0.373 U mL-1 and 0.355 U mL-1 respectively. The effects of several process parameters including reaction time, pH, temperature, enzyme dosage, initial dye concentration and hydrogen peroxide concentration were investigated to optimise the performance of the enzymatic treatment process. Soybean peroxidase demonstrated a maximum dye decolourisation efficiency of 81.4% under the conditions of 1 h incubation at 30 °C using 2 mM of hydrogen peroxide, 0.5 mL crude soybean peroxidase and 30 mg L-1 methyl orange at pH 5.0. Also, luffa peroxidase yielded a maximum decolourisation efficiency of 75.3% under the conditions of 40 min at 40 °C using 2 mM hydrogen peroxide, 1.5 mL crude luffa peroxidase and 10 mg L-1 methyl orange at pH 3.0
    corecore