132 research outputs found

    Experimental characterisation of the dilation angle of polymers

    Get PDF
    Despite the wide use of Drucker-Prager plasticity-based models on polymers, the experimental measurement of the dilation angle, a critical parameter to fully describe the plastic potential, has been rarely reported in existing literature. This paper shows, for the first time, the experimental characterisation of the dilation angle of polymers over a wide range of plastic strain. These measurements were obtained from uniaxial compression experiments conducted on poly(methyl methacrylate) (PMMA) and an untoughened epoxy resin. The calculation of the dilation angle relied on the measurements of the compressive force and the strain components obtained via Digital Image Correlation (DIC). Lower values of dilation angle were obtained for the epoxy resin, suggesting that resistance to volumetric change during plastic deformation could be associated to molecular structure and internal forces. The methodology and results presented in this study can be applied to different types of materials and employed for developing and validating constitutive models that incorporate plastic dilation

    Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    Get PDF
    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry

    The transatlantic Thames: Anglo-American tensions on the Victorian “stream of pleasure”

    Get PDF
    While it is widely understood that rivers took on new symbolic power as avatars of nationalism in the late nineteenth century, less examined is their use as a space for Transatlantic cultural flow, and transnational commentary and critique. This article explores the ways in which a variety of Americans abroad in this period centred the Thames – newly charged with nationalist sentiment – in their accounts of Britain. In particular, it analyses Elizabeth Robins and Joseph Pennell’s travel narrative The Stream of Pleasure, first published as the lead article in the ‘Midsummer Holiday Issue’ of The Century Magazine in 1889, as an exemplary text in which both artist and writer play with the image of the river in ways that chime with much wider Transatlantic debates at this moment

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    Towards the rational design of polymers using molecular simulation: Predicting the effect of cure schedule on thermo-mechanical properties for a cycloaliphatic amine-cured epoxy resin

    No full text
    We report prediction of selected physical properties (e.g. glass transition temperature, moduli and thermal degradation temperature) using molecular dynamics simulations for a difunctional epoxy monomer (the diglycidyl ether of bisphenol A) when cured with p-3,3′-dimethylcyclohexylamine to form a dielectric polymer suitable for microelectronic applications. Plots of density versus temperature show decreases in density within the same temperature range as experimental values for the thermal degradation and other thermal events determined using e.g. dynamic mechanical thermal analysis. Empirical characterisation data for a commercial example of the same polymer are presented to validate the network constructed. Extremely close agreement with empirical data is obtained: the simulated value for the glass transition temperature for the 60 C cured epoxy resin (simulated conversion α = 0.70; experimentally determined α = 0.67 using Raman spectroscopy) is ca. 70-85 C, in line with the experimental temperature range of 60-105 C (peak maximum 85 C). The simulation is also able to mimic the change in processing temperature: the simulated value for the glass transition temperature for the 130 C cured epoxy resin (simulated α = 0.81; experimentally determined α = 0.73 using Raman and α = 0.85 using DSC) is ca. 105-130 C, in line with the experimental temperature range of 110-155 C (peak maximum 128 C). This offers the possibility of optimising the processing parameters in silico to achieve the best final properties, reducing labour- and material-intensive empirical testing.</p
    corecore